Add a decorator which can be used to declare populate_indicators() functions for informative pairs.
This commit is contained in:
@@ -119,7 +119,7 @@ class Edge:
|
||||
)
|
||||
# Download informative pairs too
|
||||
res = defaultdict(list)
|
||||
for p, t in self.strategy.informative_pairs():
|
||||
for p, t in self.strategy.gather_informative_pairs():
|
||||
res[t].append(p)
|
||||
for timeframe, inf_pairs in res.items():
|
||||
timerange_startup = deepcopy(self._timerange)
|
||||
|
@@ -160,7 +160,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
# Refreshing candles
|
||||
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
self.strategy.gather_informative_pairs())
|
||||
|
||||
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
|
||||
|
||||
|
@@ -4,5 +4,5 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr
|
||||
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IntParameter, RealParameter)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_helper import (merge_informative_pair,
|
||||
from freqtrade.strategy.strategy_helper import (informative, merge_informative_pair,
|
||||
stoploss_from_absolute, stoploss_from_open)
|
||||
|
@@ -6,7 +6,7 @@ import logging
|
||||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
@@ -19,6 +19,8 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
from freqtrade.persistence import PairLocks, Trade
|
||||
from freqtrade.strategy.hyper import HyperStrategyMixin
|
||||
from freqtrade.strategy.strategy_helper import (InformativeData, _create_and_merge_informative_pair,
|
||||
_format_pair_name)
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
@@ -134,6 +136,39 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
|
||||
super().__init__(config)
|
||||
|
||||
# Gather informative pairs from @informative-decorated methods.
|
||||
self._ft_informative: Dict[
|
||||
Tuple[str, str], Tuple[InformativeData,
|
||||
Callable[[Any, DataFrame, dict], DataFrame]]] = {}
|
||||
for attr_name in dir(self.__class__):
|
||||
cls_method = getattr(self.__class__, attr_name)
|
||||
if not callable(cls_method):
|
||||
continue
|
||||
ft_informative = getattr(cls_method, '_ft_informative', [])
|
||||
if not isinstance(ft_informative, list):
|
||||
# Type check is required because mocker would return a mock object that evaluates to
|
||||
# True, confusing this code.
|
||||
continue
|
||||
for informative_data in ft_informative:
|
||||
asset = informative_data.asset
|
||||
timeframe = informative_data.timeframe
|
||||
if asset:
|
||||
pair = _format_pair_name(self.config, asset)
|
||||
if (pair, timeframe) in self._ft_informative:
|
||||
raise OperationalException(f'Informative pair {pair} {timeframe} can not '
|
||||
f'be defined more than once!')
|
||||
self._ft_informative[(pair, timeframe)] = (informative_data, cls_method)
|
||||
elif self.dp is not None:
|
||||
for pair in self.dp.current_whitelist():
|
||||
if (pair, timeframe) in self._ft_informative:
|
||||
raise OperationalException(f'Informative pair {pair} {timeframe} can '
|
||||
f'not be defined more than once!')
|
||||
self._ft_informative[(pair, timeframe)] = (informative_data, cls_method)
|
||||
|
||||
def _format_pair(self, pair: str) -> str:
|
||||
return pair.format(stake_currency=self.config['stake_currency'],
|
||||
stake=self.config['stake_currency']).upper()
|
||||
|
||||
@abstractmethod
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
@@ -377,6 +412,14 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# END - Intended to be overridden by strategy
|
||||
###
|
||||
|
||||
def gather_informative_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Internal method which gathers all informative pairs (user or automatically defined).
|
||||
"""
|
||||
informative_pairs = self.informative_pairs()
|
||||
informative_pairs += list(self._ft_informative.keys())
|
||||
return list(set(informative_pairs))
|
||||
|
||||
def get_strategy_name(self) -> str:
|
||||
"""
|
||||
Returns strategy class name
|
||||
@@ -793,6 +836,14 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
|
||||
|
||||
# call populate_indicators_Nm() which were tagged with @informative decorator.
|
||||
for (pair, timeframe), (informative_data, populate_fn) in self._ft_informative.items():
|
||||
if not informative_data.asset and pair != metadata['pair']:
|
||||
continue
|
||||
dataframe = _create_and_merge_informative_pair(
|
||||
self, dataframe, metadata, informative_data, populate_fn)
|
||||
|
||||
if self._populate_fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
|
@@ -1,10 +1,24 @@
|
||||
import pandas as pd
|
||||
from typing import Any, Callable, NamedTuple, Optional, Union
|
||||
|
||||
import pandas as pd
|
||||
from mypy_extensions import KwArg
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
|
||||
class InformativeData(NamedTuple):
|
||||
asset: Optional[str]
|
||||
timeframe: str
|
||||
fmt: Union[str, Callable[[KwArg(str)], str], None]
|
||||
ffill: bool
|
||||
|
||||
|
||||
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True,
|
||||
append_timeframe: bool = True,
|
||||
date_column: str = 'date') -> pd.DataFrame:
|
||||
"""
|
||||
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
|
||||
|
||||
@@ -24,6 +38,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
:param timeframe: Timeframe of the original pair sample.
|
||||
:param timeframe_inf: Timeframe of the informative pair sample.
|
||||
:param ffill: Forwardfill missing values - optional but usually required
|
||||
:param append_timeframe: Rename columns by appending timeframe.
|
||||
:param date_column: A custom date column name.
|
||||
:return: Merged dataframe
|
||||
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
|
||||
"""
|
||||
@@ -32,25 +48,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
minutes = timeframe_to_minutes(timeframe)
|
||||
if minutes == minutes_inf:
|
||||
# No need to forwardshift if the timeframes are identical
|
||||
informative['date_merge'] = informative["date"]
|
||||
informative['date_merge'] = informative[date_column]
|
||||
elif minutes < minutes_inf:
|
||||
# Subtract "small" timeframe so merging is not delayed by 1 small candle
|
||||
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
|
||||
informative['date_merge'] = (
|
||||
informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm')
|
||||
informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
|
||||
pd.to_timedelta(minutes, 'm')
|
||||
)
|
||||
else:
|
||||
raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
|
||||
"This would create new rows, and can throw off your regular indicators.")
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
date_merge = 'date_merge'
|
||||
if append_timeframe:
|
||||
date_merge = f'date_merge_{timeframe_inf}'
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date',
|
||||
right_on=f'date_merge_{timeframe_inf}', how='left')
|
||||
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
|
||||
right_on=date_merge, how='left')
|
||||
dataframe = dataframe.drop(date_merge, axis=1)
|
||||
|
||||
if ffill:
|
||||
dataframe = dataframe.ffill()
|
||||
@@ -94,3 +114,117 @@ def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
|
||||
:return: Positive stop loss value relative to current price
|
||||
"""
|
||||
return 1 - (stop_rate / current_rate)
|
||||
|
||||
|
||||
def informative(timeframe: str, asset: str = '',
|
||||
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
|
||||
ffill: bool = True) -> Callable[[Callable[[Any, DataFrame, dict], DataFrame]],
|
||||
Callable[[Any, DataFrame, dict], DataFrame]]:
|
||||
"""
|
||||
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
|
||||
define informative indicators.
|
||||
|
||||
Example usage:
|
||||
|
||||
@informative('1h')
|
||||
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
:param timeframe: Informative timeframe. Must always be higher than strategy timeframe.
|
||||
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
|
||||
current pair.
|
||||
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
|
||||
specified, defaults to {asset}_{name}_{timeframe} if asset is specified, or {name}_{timeframe}
|
||||
otherwise.
|
||||
* {asset}: name of informative asset, provided in lower-case, with / replaced with _. Stake
|
||||
currency is not included in this string.
|
||||
* {name}: user-specified dataframe column name.
|
||||
* {timeframe}: informative timeframe.
|
||||
:param ffill: ffill dataframe after mering informative pair.
|
||||
"""
|
||||
_asset = asset
|
||||
_timeframe = timeframe
|
||||
_fmt = fmt
|
||||
_ffill = ffill
|
||||
|
||||
def decorator(fn: Callable[[Any, DataFrame, dict], DataFrame]):
|
||||
informative_pairs = getattr(fn, '_ft_informative', [])
|
||||
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
|
||||
setattr(fn, '_ft_informative', informative_pairs)
|
||||
return fn
|
||||
return decorator
|
||||
|
||||
|
||||
def _format_pair_name(config, pair: str) -> str:
|
||||
return pair.format(stake_currency=config['stake_currency'],
|
||||
stake=config['stake_currency']).upper()
|
||||
|
||||
|
||||
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame,
|
||||
metadata: dict, informative_data: InformativeData,
|
||||
populate_indicators: Callable[[Any, DataFrame, dict],
|
||||
DataFrame]):
|
||||
asset = informative_data.asset or ''
|
||||
timeframe = informative_data.timeframe
|
||||
fmt = informative_data.fmt
|
||||
ffill = informative_data.ffill
|
||||
config = strategy.config
|
||||
dp = strategy.dp
|
||||
|
||||
if asset:
|
||||
# Insert stake currency if needed.
|
||||
asset = _format_pair_name(config, asset)
|
||||
else:
|
||||
# Not specifying an asset will define informative dataframe for current pair.
|
||||
asset = metadata['pair']
|
||||
|
||||
if '/' in asset:
|
||||
base, quote = asset.split('/')
|
||||
else:
|
||||
# When futures are supported this may need reevaluation.
|
||||
# base, quote = asset, None
|
||||
raise OperationalException('Not implemented.')
|
||||
|
||||
# Default format. This optimizes for the common case: informative pairs using same stake
|
||||
# currency. When quote currency matches stake currency, column name will omit base currency.
|
||||
# This allows easily reconfiguring strategy to use different base currency. In a rare case
|
||||
# where it is desired to keep quote currency in column name at all times user should specify
|
||||
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
|
||||
if not fmt:
|
||||
fmt = '{column}_{timeframe}' # Informatives of current pair
|
||||
if asset != metadata['pair']:
|
||||
if quote == config['stake_currency']:
|
||||
fmt = '{base}_' + fmt # Informatives of other pair
|
||||
else:
|
||||
fmt = '{base}_{quote}_' + fmt # Informatives of different quote currency
|
||||
|
||||
inf_metadata = {'pair': asset, 'timeframe': timeframe}
|
||||
inf_dataframe = dp.get_pair_dataframe(asset, timeframe)
|
||||
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
|
||||
|
||||
formatter: Any = None
|
||||
if callable(fmt):
|
||||
formatter = fmt # A custom user-specified formatter function.
|
||||
else:
|
||||
formatter = fmt.format # A default string formatter.
|
||||
|
||||
fmt_args = {
|
||||
'BASE': base.upper(),
|
||||
'QUOTE': quote.upper(),
|
||||
'base': base.lower(),
|
||||
'quote': quote.lower(),
|
||||
'asset': asset,
|
||||
'timeframe': timeframe,
|
||||
}
|
||||
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
|
||||
inplace=True)
|
||||
|
||||
date_column = formatter(column='date', **fmt_args)
|
||||
if date_column in dataframe.columns:
|
||||
raise OperationalException(f'Duplicate column name {date_column} exists in '
|
||||
f'dataframe! Ensure column names are unique!')
|
||||
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
|
||||
ffill=ffill, append_timeframe=False,
|
||||
date_column=date_column)
|
||||
return dataframe
|
||||
|
Reference in New Issue
Block a user