Add a decorator which can be used to declare populate_indicators() functions for informative pairs.
This commit is contained in:
parent
d84ef34740
commit
1fdb656334
@ -679,7 +679,89 @@ In some situations it may be confusing to deal with stops relative to current ra
|
||||
|
||||
```
|
||||
|
||||
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
|
||||
### *@informative()*
|
||||
|
||||
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
|
||||
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
|
||||
When hyperopting, please follow instructions of [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter).
|
||||
|
||||
??? Example "Fast and easy way to define informative pairs"
|
||||
|
||||
Most of the time we do not need power and flexibility offered by `merge_informative_pair()`, therefore we can use a decorator to quickly define informative pairs.
|
||||
|
||||
``` python
|
||||
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy import IStrategy, informative
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# This method is not required.
|
||||
# def informative_pairs(self): ...
|
||||
|
||||
# Define informative upper timeframe for each pair. Decorators can be stacked on same
|
||||
# method. Available in populate_indicators as 'rsi_30m' and 'rsi_1h'.
|
||||
@informative('30m')
|
||||
@informative('1h')
|
||||
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
# Define BTC/STAKE informative pair. Available in populate_indicators and other methods as
|
||||
# 'btc_rsi_1h'. Current stake currency should be specified as {stake} format variable
|
||||
# instead of hardcoding actual stake currency. Available in populate_indicators and other
|
||||
# methods as 'btc_rsi_1h'.
|
||||
@informative('1h', 'BTC/{stake}')
|
||||
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
# Define BTC/ETH informative pair. You must specify quote currency if it is different from
|
||||
# stake currency. Available in populate_indicators and other methods as 'eth_btc_rsi_1h'.
|
||||
@informative('1h', 'ETH/BTC')
|
||||
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
# Define BTC/STAKE informative pair. A custom formatter may be specified for formatting
|
||||
# column names. Format string supports these format variables:
|
||||
# * {asset} - full name of the asset, for example 'BTC/USDT'.
|
||||
# * {base} - base currency in lower case, for example 'eth'.
|
||||
# * {BASE} - same as {base}, except in upper case.
|
||||
# * {quote} - quote currency in lower case, for example 'usdt'.
|
||||
# * {QUOTE} - same as {quote}, except in upper case.
|
||||
# * {column} - name of dataframe column.
|
||||
# * {timeframe} - timeframe of informative dataframe.
|
||||
# A callable `fmt(**kwargs) -> str` may be specified, to implement custom formatting.
|
||||
# Available in populate_indicators and other methods as 'rsi_upper'.
|
||||
@informative('1h', 'BTC/{stake}', '{name}')
|
||||
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi_upper'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# Strategy timeframe indicators for current pair.
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
# Informative pairs are available in this method.
|
||||
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
|
||||
return dataframe
|
||||
|
||||
```
|
||||
|
||||
See docstring of `@informative()` decorator for more information.
|
||||
|
||||
!!! Note
|
||||
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
|
||||
manually as described [in the DataProvider section](#complete-data-provider-sample).
|
||||
|
||||
!!! Warning
|
||||
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
|
||||
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
|
||||
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
|
||||
|
||||
!!! Warning
|
||||
When using a legacy hyperopt implementation informative pairs defined with a decorator will not be executed. Please update your strategy if necessary.
|
||||
|
||||
## Additional data (Wallets)
|
||||
|
||||
|
@ -119,7 +119,7 @@ class Edge:
|
||||
)
|
||||
# Download informative pairs too
|
||||
res = defaultdict(list)
|
||||
for p, t in self.strategy.informative_pairs():
|
||||
for p, t in self.strategy.gather_informative_pairs():
|
||||
res[t].append(p)
|
||||
for timeframe, inf_pairs in res.items():
|
||||
timerange_startup = deepcopy(self._timerange)
|
||||
|
@ -160,7 +160,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
# Refreshing candles
|
||||
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
self.strategy.gather_informative_pairs())
|
||||
|
||||
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
|
||||
|
||||
|
@ -4,5 +4,5 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr
|
||||
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
|
||||
IntParameter, RealParameter)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_helper import (merge_informative_pair,
|
||||
from freqtrade.strategy.strategy_helper import (informative, merge_informative_pair,
|
||||
stoploss_from_absolute, stoploss_from_open)
|
||||
|
@ -6,7 +6,7 @@ import logging
|
||||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
@ -19,6 +19,8 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
from freqtrade.persistence import PairLocks, Trade
|
||||
from freqtrade.strategy.hyper import HyperStrategyMixin
|
||||
from freqtrade.strategy.strategy_helper import (InformativeData, _create_and_merge_informative_pair,
|
||||
_format_pair_name)
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
@ -134,6 +136,39 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
self._last_candle_seen_per_pair: Dict[str, datetime] = {}
|
||||
super().__init__(config)
|
||||
|
||||
# Gather informative pairs from @informative-decorated methods.
|
||||
self._ft_informative: Dict[
|
||||
Tuple[str, str], Tuple[InformativeData,
|
||||
Callable[[Any, DataFrame, dict], DataFrame]]] = {}
|
||||
for attr_name in dir(self.__class__):
|
||||
cls_method = getattr(self.__class__, attr_name)
|
||||
if not callable(cls_method):
|
||||
continue
|
||||
ft_informative = getattr(cls_method, '_ft_informative', [])
|
||||
if not isinstance(ft_informative, list):
|
||||
# Type check is required because mocker would return a mock object that evaluates to
|
||||
# True, confusing this code.
|
||||
continue
|
||||
for informative_data in ft_informative:
|
||||
asset = informative_data.asset
|
||||
timeframe = informative_data.timeframe
|
||||
if asset:
|
||||
pair = _format_pair_name(self.config, asset)
|
||||
if (pair, timeframe) in self._ft_informative:
|
||||
raise OperationalException(f'Informative pair {pair} {timeframe} can not '
|
||||
f'be defined more than once!')
|
||||
self._ft_informative[(pair, timeframe)] = (informative_data, cls_method)
|
||||
elif self.dp is not None:
|
||||
for pair in self.dp.current_whitelist():
|
||||
if (pair, timeframe) in self._ft_informative:
|
||||
raise OperationalException(f'Informative pair {pair} {timeframe} can '
|
||||
f'not be defined more than once!')
|
||||
self._ft_informative[(pair, timeframe)] = (informative_data, cls_method)
|
||||
|
||||
def _format_pair(self, pair: str) -> str:
|
||||
return pair.format(stake_currency=self.config['stake_currency'],
|
||||
stake=self.config['stake_currency']).upper()
|
||||
|
||||
@abstractmethod
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
@ -377,6 +412,14 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# END - Intended to be overridden by strategy
|
||||
###
|
||||
|
||||
def gather_informative_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Internal method which gathers all informative pairs (user or automatically defined).
|
||||
"""
|
||||
informative_pairs = self.informative_pairs()
|
||||
informative_pairs += list(self._ft_informative.keys())
|
||||
return list(set(informative_pairs))
|
||||
|
||||
def get_strategy_name(self) -> str:
|
||||
"""
|
||||
Returns strategy class name
|
||||
@ -793,6 +836,14 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
|
||||
|
||||
# call populate_indicators_Nm() which were tagged with @informative decorator.
|
||||
for (pair, timeframe), (informative_data, populate_fn) in self._ft_informative.items():
|
||||
if not informative_data.asset and pair != metadata['pair']:
|
||||
continue
|
||||
dataframe = _create_and_merge_informative_pair(
|
||||
self, dataframe, metadata, informative_data, populate_fn)
|
||||
|
||||
if self._populate_fun_len == 2:
|
||||
warnings.warn("deprecated - check out the Sample strategy to see "
|
||||
"the current function headers!", DeprecationWarning)
|
||||
|
@ -1,10 +1,24 @@
|
||||
import pandas as pd
|
||||
from typing import Any, Callable, NamedTuple, Optional, Union
|
||||
|
||||
import pandas as pd
|
||||
from mypy_extensions import KwArg
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
|
||||
class InformativeData(NamedTuple):
|
||||
asset: Optional[str]
|
||||
timeframe: str
|
||||
fmt: Union[str, Callable[[KwArg(str)], str], None]
|
||||
ffill: bool
|
||||
|
||||
|
||||
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True,
|
||||
append_timeframe: bool = True,
|
||||
date_column: str = 'date') -> pd.DataFrame:
|
||||
"""
|
||||
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
|
||||
|
||||
@ -24,6 +38,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
:param timeframe: Timeframe of the original pair sample.
|
||||
:param timeframe_inf: Timeframe of the informative pair sample.
|
||||
:param ffill: Forwardfill missing values - optional but usually required
|
||||
:param append_timeframe: Rename columns by appending timeframe.
|
||||
:param date_column: A custom date column name.
|
||||
:return: Merged dataframe
|
||||
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
|
||||
"""
|
||||
@ -32,25 +48,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
minutes = timeframe_to_minutes(timeframe)
|
||||
if minutes == minutes_inf:
|
||||
# No need to forwardshift if the timeframes are identical
|
||||
informative['date_merge'] = informative["date"]
|
||||
informative['date_merge'] = informative[date_column]
|
||||
elif minutes < minutes_inf:
|
||||
# Subtract "small" timeframe so merging is not delayed by 1 small candle
|
||||
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
|
||||
informative['date_merge'] = (
|
||||
informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm')
|
||||
informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
|
||||
pd.to_timedelta(minutes, 'm')
|
||||
)
|
||||
else:
|
||||
raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
|
||||
"This would create new rows, and can throw off your regular indicators.")
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
date_merge = 'date_merge'
|
||||
if append_timeframe:
|
||||
date_merge = f'date_merge_{timeframe_inf}'
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date',
|
||||
right_on=f'date_merge_{timeframe_inf}', how='left')
|
||||
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
|
||||
right_on=date_merge, how='left')
|
||||
dataframe = dataframe.drop(date_merge, axis=1)
|
||||
|
||||
if ffill:
|
||||
dataframe = dataframe.ffill()
|
||||
@ -94,3 +114,117 @@ def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
|
||||
:return: Positive stop loss value relative to current price
|
||||
"""
|
||||
return 1 - (stop_rate / current_rate)
|
||||
|
||||
|
||||
def informative(timeframe: str, asset: str = '',
|
||||
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
|
||||
ffill: bool = True) -> Callable[[Callable[[Any, DataFrame, dict], DataFrame]],
|
||||
Callable[[Any, DataFrame, dict], DataFrame]]:
|
||||
"""
|
||||
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
|
||||
define informative indicators.
|
||||
|
||||
Example usage:
|
||||
|
||||
@informative('1h')
|
||||
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
return dataframe
|
||||
|
||||
:param timeframe: Informative timeframe. Must always be higher than strategy timeframe.
|
||||
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
|
||||
current pair.
|
||||
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
|
||||
specified, defaults to {asset}_{name}_{timeframe} if asset is specified, or {name}_{timeframe}
|
||||
otherwise.
|
||||
* {asset}: name of informative asset, provided in lower-case, with / replaced with _. Stake
|
||||
currency is not included in this string.
|
||||
* {name}: user-specified dataframe column name.
|
||||
* {timeframe}: informative timeframe.
|
||||
:param ffill: ffill dataframe after mering informative pair.
|
||||
"""
|
||||
_asset = asset
|
||||
_timeframe = timeframe
|
||||
_fmt = fmt
|
||||
_ffill = ffill
|
||||
|
||||
def decorator(fn: Callable[[Any, DataFrame, dict], DataFrame]):
|
||||
informative_pairs = getattr(fn, '_ft_informative', [])
|
||||
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
|
||||
setattr(fn, '_ft_informative', informative_pairs)
|
||||
return fn
|
||||
return decorator
|
||||
|
||||
|
||||
def _format_pair_name(config, pair: str) -> str:
|
||||
return pair.format(stake_currency=config['stake_currency'],
|
||||
stake=config['stake_currency']).upper()
|
||||
|
||||
|
||||
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame,
|
||||
metadata: dict, informative_data: InformativeData,
|
||||
populate_indicators: Callable[[Any, DataFrame, dict],
|
||||
DataFrame]):
|
||||
asset = informative_data.asset or ''
|
||||
timeframe = informative_data.timeframe
|
||||
fmt = informative_data.fmt
|
||||
ffill = informative_data.ffill
|
||||
config = strategy.config
|
||||
dp = strategy.dp
|
||||
|
||||
if asset:
|
||||
# Insert stake currency if needed.
|
||||
asset = _format_pair_name(config, asset)
|
||||
else:
|
||||
# Not specifying an asset will define informative dataframe for current pair.
|
||||
asset = metadata['pair']
|
||||
|
||||
if '/' in asset:
|
||||
base, quote = asset.split('/')
|
||||
else:
|
||||
# When futures are supported this may need reevaluation.
|
||||
# base, quote = asset, None
|
||||
raise OperationalException('Not implemented.')
|
||||
|
||||
# Default format. This optimizes for the common case: informative pairs using same stake
|
||||
# currency. When quote currency matches stake currency, column name will omit base currency.
|
||||
# This allows easily reconfiguring strategy to use different base currency. In a rare case
|
||||
# where it is desired to keep quote currency in column name at all times user should specify
|
||||
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
|
||||
if not fmt:
|
||||
fmt = '{column}_{timeframe}' # Informatives of current pair
|
||||
if asset != metadata['pair']:
|
||||
if quote == config['stake_currency']:
|
||||
fmt = '{base}_' + fmt # Informatives of other pair
|
||||
else:
|
||||
fmt = '{base}_{quote}_' + fmt # Informatives of different quote currency
|
||||
|
||||
inf_metadata = {'pair': asset, 'timeframe': timeframe}
|
||||
inf_dataframe = dp.get_pair_dataframe(asset, timeframe)
|
||||
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
|
||||
|
||||
formatter: Any = None
|
||||
if callable(fmt):
|
||||
formatter = fmt # A custom user-specified formatter function.
|
||||
else:
|
||||
formatter = fmt.format # A default string formatter.
|
||||
|
||||
fmt_args = {
|
||||
'BASE': base.upper(),
|
||||
'QUOTE': quote.upper(),
|
||||
'base': base.lower(),
|
||||
'quote': quote.lower(),
|
||||
'asset': asset,
|
||||
'timeframe': timeframe,
|
||||
}
|
||||
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
|
||||
inplace=True)
|
||||
|
||||
date_column = formatter(column='date', **fmt_args)
|
||||
if date_column in dataframe.columns:
|
||||
raise OperationalException(f'Duplicate column name {date_column} exists in '
|
||||
f'dataframe! Ensure column names are unique!')
|
||||
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
|
||||
ffill=ffill, append_timeframe=False,
|
||||
date_column=date_column)
|
||||
return dataframe
|
||||
|
@ -1218,6 +1218,7 @@ def test_api_strategies(botclient):
|
||||
assert_response(rc)
|
||||
assert rc.json() == {'strategies': [
|
||||
'HyperoptableStrategy',
|
||||
'InformativeDecoratorTest',
|
||||
'StrategyTestV2',
|
||||
'TestStrategyLegacyV1'
|
||||
]}
|
||||
|
75
tests/strategy/strats/informative_decorator_strategy.py
Normal file
75
tests/strategy/strats/informative_decorator_strategy.py
Normal file
@ -0,0 +1,75 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.strategy import informative, merge_informative_pair
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
class InformativeDecoratorTest(IStrategy):
|
||||
"""
|
||||
Strategy used by tests freqtrade bot.
|
||||
Please do not modify this strategy, it's intended for internal use only.
|
||||
Please look at the SampleStrategy in the user_data/strategy directory
|
||||
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
||||
for samples and inspiration.
|
||||
"""
|
||||
INTERFACE_VERSION = 2
|
||||
stoploss = -0.10
|
||||
timeframe = '5m'
|
||||
startup_candle_count: int = 20
|
||||
|
||||
def informative_pairs(self):
|
||||
return [('BTC/USDT', '5m')]
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['buy'] = 0
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['sell'] = 0
|
||||
return dataframe
|
||||
|
||||
# Decorator stacking test.
|
||||
@informative('30m')
|
||||
@informative('1h')
|
||||
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = 14
|
||||
return dataframe
|
||||
|
||||
# Simple informative test.
|
||||
@informative('1h', 'BTC/{stake}')
|
||||
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = 14
|
||||
return dataframe
|
||||
|
||||
# Quote currency different from stake currency test.
|
||||
@informative('1h', 'ETH/BTC')
|
||||
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = 14
|
||||
return dataframe
|
||||
|
||||
# Formatting test.
|
||||
@informative('30m', 'BTC/{stake}', '{column}_{BASE}_{QUOTE}_{base}_{quote}_{asset}_{timeframe}')
|
||||
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = 14
|
||||
return dataframe
|
||||
|
||||
# Custom formatter test
|
||||
@informative('30m', 'ETH/{stake}', fmt=lambda column, **kwargs: column + '_from_callable')
|
||||
def populate_indicators_eth_30m(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['rsi'] = 14
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# Strategy timeframe indicators for current pair.
|
||||
dataframe['rsi'] = 14
|
||||
# Informative pairs are available in this method.
|
||||
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
|
||||
|
||||
# Mixing manual informative pairs with decorators.
|
||||
informative = self.dp.get_pair_dataframe('BTC/USDT', '5m')
|
||||
informative['rsi'] = 14
|
||||
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, '5m', ffill=True)
|
||||
|
||||
return dataframe
|
@ -607,7 +607,7 @@ def test_is_informative_pairs_callback(default_conf):
|
||||
strategy = StrategyResolver.load_strategy(default_conf)
|
||||
# Should return empty
|
||||
# Uses fallback to base implementation
|
||||
assert [] == strategy.informative_pairs()
|
||||
assert [] == strategy.gather_informative_pairs()
|
||||
|
||||
|
||||
@pytest.mark.parametrize('error', [
|
||||
|
@ -4,6 +4,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.strategy import merge_informative_pair, stoploss_from_open, timeframe_to_minutes
|
||||
|
||||
|
||||
@ -132,3 +133,57 @@ def test_stoploss_from_open():
|
||||
assert stoploss == 0
|
||||
else:
|
||||
assert isclose(stop_price, expected_stop_price, rel_tol=0.00001)
|
||||
|
||||
|
||||
def test_informative_decorator(mocker, default_conf):
|
||||
test_data_5m = generate_test_data('5m', 40)
|
||||
test_data_30m = generate_test_data('30m', 40)
|
||||
test_data_1h = generate_test_data('1h', 40)
|
||||
data = {
|
||||
('XRP/USDT', '5m'): test_data_5m,
|
||||
('XRP/USDT', '30m'): test_data_30m,
|
||||
('XRP/USDT', '1h'): test_data_1h,
|
||||
('LTC/USDT', '5m'): test_data_5m,
|
||||
('LTC/USDT', '30m'): test_data_30m,
|
||||
('LTC/USDT', '1h'): test_data_1h,
|
||||
('BTC/USDT', '30m'): test_data_30m,
|
||||
('BTC/USDT', '5m'): test_data_5m,
|
||||
('BTC/USDT', '1h'): test_data_1h,
|
||||
('ETH/USDT', '1h'): test_data_1h,
|
||||
('ETH/USDT', '30m'): test_data_30m,
|
||||
('ETH/BTC', '1h'): test_data_1h,
|
||||
}
|
||||
from .strats.informative_decorator_strategy import InformativeDecoratorTest
|
||||
default_conf['stake_currency'] = 'USDT'
|
||||
InformativeDecoratorTest.dp = DataProvider({}, None, None)
|
||||
mocker.patch.object(InformativeDecoratorTest.dp, 'current_whitelist', return_value=[
|
||||
'XRP/USDT', 'LTC/USDT'
|
||||
])
|
||||
strategy = InformativeDecoratorTest(config=default_conf)
|
||||
|
||||
assert len(strategy._ft_informative) == 8
|
||||
informative_pairs = [('XRP/USDT', '1h'), ('LTC/USDT', '1h'), ('XRP/USDT', '30m'),
|
||||
('LTC/USDT', '30m'), ('BTC/USDT', '1h'), ('BTC/USDT', '30m'),
|
||||
('BTC/USDT', '5m'), ('ETH/BTC', '1h'), ('ETH/USDT', '30m')]
|
||||
for inf_pair in informative_pairs:
|
||||
assert inf_pair in strategy.gather_informative_pairs()
|
||||
|
||||
def test_historic_ohlcv(pair, timeframe):
|
||||
return data[(pair, timeframe or strategy.timeframe)].copy()
|
||||
mocker.patch('freqtrade.data.dataprovider.DataProvider.historic_ohlcv',
|
||||
side_effect=test_historic_ohlcv)
|
||||
|
||||
analyzed = strategy.advise_all_indicators(
|
||||
{p: data[(p, strategy.timeframe)] for p in ('XRP/USDT', 'LTC/USDT')})
|
||||
expected_columns = [
|
||||
'rsi_1h', 'rsi_30m', # Stacked informative decorators
|
||||
'btc_rsi_1h', # BTC 1h informative
|
||||
'rsi_BTC_USDT_btc_usdt_BTC/USDT_30m', # Column formatting
|
||||
'rsi_from_callable', # Custom column formatter
|
||||
'eth_btc_rsi_1h', # Quote currency not matching stake currency
|
||||
'rsi', 'rsi_less', # Non-informative columns
|
||||
'rsi_5m', # Manual informative dataframe
|
||||
]
|
||||
for _, dataframe in analyzed.items():
|
||||
for col in expected_columns:
|
||||
assert col in dataframe.columns
|
||||
|
@ -35,7 +35,7 @@ def test_search_all_strategies_no_failed():
|
||||
directory = Path(__file__).parent / "strats"
|
||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
||||
assert isinstance(strategies, list)
|
||||
assert len(strategies) == 3
|
||||
assert len(strategies) == 4
|
||||
assert isinstance(strategies[0], dict)
|
||||
|
||||
|
||||
@ -43,10 +43,10 @@ def test_search_all_strategies_with_failed():
|
||||
directory = Path(__file__).parent / "strats"
|
||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
||||
assert isinstance(strategies, list)
|
||||
assert len(strategies) == 4
|
||||
assert len(strategies) == 5
|
||||
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
||||
# and 1 which fails to load
|
||||
assert len([x for x in strategies if x['class'] is not None]) == 3
|
||||
assert len([x for x in strategies if x['class'] is not None]) == 4
|
||||
assert len([x for x in strategies if x['class'] is None]) == 1
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user