Long strategy generates about 1.81% a trade, at an average time of 277 min and a total returns of 0.018BTC over 20 days. Sell points are decent, could execute more buys technically
This commit is contained in:
parent
df1295c74d
commit
15ce56fff1
@ -9,6 +9,7 @@ from pandas import DataFrame
|
|||||||
|
|
||||||
import talib.abstract as ta
|
import talib.abstract as ta
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
import numpy # noqa
|
||||||
|
|
||||||
|
|
||||||
class Long(IStrategy):
|
class Long(IStrategy):
|
||||||
@ -47,6 +48,17 @@ class Long(IStrategy):
|
|||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
dataframe['bb_middleband'] = bollinger['mid']
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
dataframe['bb_upperband'] = bollinger['upper']
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
|
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||||
|
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||||
|
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||||
|
|
||||||
|
# SAR Parabol
|
||||||
|
dataframe['sar'] = ta.SAR(dataframe)
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||||
@ -73,7 +85,10 @@ class Long(IStrategy):
|
|||||||
"""
|
"""
|
||||||
dataframe.loc[
|
dataframe.loc[
|
||||||
(
|
(
|
||||||
(dataframe['tema'] < dataframe['close'])
|
# (dataframe['tema'] < dataframe['close'])
|
||||||
|
|
||||||
|
(dataframe['sar'] > dataframe['close']) &
|
||||||
|
(dataframe['fisher_rsi'] > 0.3)
|
||||||
),
|
),
|
||||||
'sell'] = 1
|
'sell'] = 1
|
||||||
return dataframe
|
return dataframe
|
||||||
|
Loading…
Reference in New Issue
Block a user