Merge pull request #513 from gcarq/arrays_for_backtesting

Make backtesting 5x faster
This commit is contained in:
Gérald LONLAS 2018-02-11 21:02:43 -08:00 committed by GitHub
commit 1134c81aad
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 48 additions and 52 deletions

View File

@ -296,18 +296,17 @@ def min_roi_reached(trade: Trade, current_rate: float, current_time: datetime) -
strategy = Strategy()
current_profit = trade.calc_profit_percent(current_rate)
if strategy.stoploss is not None and current_profit < float(strategy.stoploss):
if strategy.stoploss is not None and current_profit < strategy.stoploss:
logger.debug('Stop loss hit.')
return True
# Check if time matches and current rate is above threshold
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
for duration_string, threshold in strategy.minimal_roi.items():
duration = float(duration_string)
if time_diff > duration and current_profit > threshold:
return True
if time_diff < duration:
for duration, threshold in strategy.minimal_roi.items():
if time_diff <= duration:
return False
if current_profit > threshold:
return True
return False

View File

@ -67,30 +67,29 @@ def generate_text_table(
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
def get_sell_trade_entry(pair, row, buy_subset, ticker, trade_count_lock, args):
def get_sell_trade_entry(pair, buy_row, partial_ticker, trade_count_lock, args):
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
trade = Trade(open_rate=row.close,
open_date=row.Index,
trade = Trade(open_rate=buy_row.close,
open_date=buy_row.date,
stake_amount=stake_amount,
amount=stake_amount / row.open,
amount=stake_amount / buy_row.open,
fee=exchange.get_fee()
)
# calculate win/lose forwards from buy point
sell_subset = ticker[ticker.index > row.Index][['close', 'sell', 'buy']]
for row2 in sell_subset.itertuples(index=True):
for sell_row in partial_ticker:
if max_open_trades > 0:
# Increase trade_count_lock for every iteration
trade_count_lock[row2.Index] = trade_count_lock.get(row2.Index, 0) + 1
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
buy_signal = row2.buy
if(should_sell(trade, row2.close, row2.Index, buy_signal, row2.sell)):
return row2, (pair,
trade.calc_profit_percent(rate=row2.close),
trade.calc_profit(rate=row2.close),
(row2.Index - row.Index).seconds // 60
), row2.Index
buy_signal = sell_row.buy
if should_sell(trade, sell_row.close, sell_row.date, buy_signal, sell_row.sell):
return sell_row, (pair,
trade.calc_profit_percent(rate=sell_row.close),
trade.calc_profit(rate=sell_row.close),
(sell_row.date - buy_row.date).seconds // 60
), sell_row.date
return None
@ -107,6 +106,7 @@ def backtest(args) -> DataFrame:
stoploss: use stoploss
:return: DataFrame
"""
headers = ['date', 'buy', 'open', 'close', 'sell']
processed = args['processed']
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', True)
@ -116,29 +116,26 @@ def backtest(args) -> DataFrame:
trade_count_lock: dict = {}
exchange._API = Bittrex({'key': '', 'secret': ''})
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0
ticker = populate_sell_trend(populate_buy_trend(pair_data))
if 'date' in ticker:
ticker.set_index('date', inplace=True)
# for each buy point
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = populate_sell_trend(populate_buy_trend(pair_data))[headers]
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
headers = ['buy', 'open', 'close', 'sell']
buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers]
for row in buy_subset.itertuples(index=True):
for index, row in enumerate(ticker):
if row.buy == 0 or row.sell == 1:
continue # skip rows where no buy signal or that would immediately sell off
if realistic:
if lock_pair_until is not None and row.Index <= lock_pair_until:
if lock_pair_until is not None and row.date <= lock_pair_until:
continue
if max_open_trades > 0:
# Check if max_open_trades has already been reached for the given date
if not trade_count_lock.get(row.Index, 0) < max_open_trades:
if not trade_count_lock.get(row.date, 0) < max_open_trades:
continue
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
if max_open_trades > 0:
# Increase lock
trade_count_lock[row.Index] = trade_count_lock.get(row.Index, 0) + 1
ret = get_sell_trade_entry(pair, row, buy_subset, ticker,
trade_count_lock, args)
ret = get_sell_trade_entry(pair, row, ticker[index+1:], trade_count_lock, args)
if ret:
row2, trade_entry, next_date = ret
lock_pair_until = next_date
@ -148,9 +145,9 @@ def backtest(args) -> DataFrame:
# record a tuple of pair, current_profit_percent,
# entry-date, duration
records.append((pair, trade_entry[1],
row.Index.strftime('%s'),
row2.Index.strftime('%s'),
row.Index, trade_entry[3]))
row.date.strftime('%s'),
row2.date.strftime('%s'),
row.date, trade_entry[3]))
# For now export inside backtest(), maybe change so that backtest()
# returns a tuple like: (dataframe, records, logs, etc)
if record and record.find('trades') >= 0:

View File

@ -225,12 +225,12 @@ def calculate_loss(total_profit: float, trade_count: int, trade_duration: float)
return trade_loss + profit_loss + duration_loss
def generate_roi_table(params) -> Dict[str, float]:
def generate_roi_table(params) -> Dict[int, float]:
roi_table = {}
roi_table["0"] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[str(params['roi_t3'])] = params['roi_p1'] + params['roi_p2']
roi_table[str(params['roi_t3'] + params['roi_t2'])] = params['roi_p1']
roi_table[str(params['roi_t3'] + params['roi_t2'] + params['roi_t1'])] = 0
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table

View File

@ -71,11 +71,11 @@ class Strategy(object):
# Minimal ROI designed for the strategy
self.minimal_roi = OrderedDict(sorted(
self.custom_strategy.minimal_roi.items(),
key=lambda tuple: float(tuple[0]))) # sort after converting to number
{int(key): value for (key, value) in self.custom_strategy.minimal_roi.items()}.items(),
key=lambda tuple: tuple[0])) # sort after converting to number
# Optimal stoploss designed for the strategy
self.stoploss = self.custom_strategy.stoploss
self.stoploss = float(self.custom_strategy.stoploss)
self.ticker_interval = self.custom_strategy.ticker_interval

View File

@ -255,7 +255,7 @@ def test_roi_table_generation():
'roi_p2': 2,
'roi_p3': 3,
}
assert generate_roi_table(params) == {'0': 6, '15': 3, '25': 1, '30': 0}
assert generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
# test log_trials_result

View File

@ -57,7 +57,7 @@ def test_strategy(result):
strategy.init({'strategy': 'default_strategy'})
assert hasattr(strategy.custom_strategy, 'minimal_roi')
assert strategy.minimal_roi['0'] == 0.04
assert strategy.minimal_roi[0] == 0.04
assert hasattr(strategy.custom_strategy, 'stoploss')
assert strategy.stoploss == -0.10
@ -86,7 +86,7 @@ def test_strategy_override_minimal_roi(caplog):
strategy.init(config)
assert hasattr(strategy.custom_strategy, 'minimal_roi')
assert strategy.minimal_roi['0'] == 0.5
assert strategy.minimal_roi[0] == 0.5
assert ('freqtrade.strategy.strategy',
logging.INFO,
'Override strategy \'minimal_roi\' with value in config file.'
@ -142,8 +142,8 @@ def test_strategy_singleton():
strategy1.init({'strategy': 'default_strategy'})
assert hasattr(strategy1.custom_strategy, 'minimal_roi')
assert strategy1.minimal_roi['0'] == 0.04
assert strategy1.minimal_roi[0] == 0.04
strategy2 = Strategy()
assert hasattr(strategy2.custom_strategy, 'minimal_roi')
assert strategy2.minimal_roi['0'] == 0.04
assert strategy2.minimal_roi[0] == 0.04