Merge pull request #3899 from freqtrade/improve_hyperopt_tests
Improve and refactor hyperopt tests
This commit is contained in:
commit
0539bd5280
51
tests/optimize/conftest.py
Normal file
51
tests/optimize/conftest.py
Normal file
@ -0,0 +1,51 @@
|
||||
from copy import deepcopy
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from tests.conftest import patch_exchange
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt_conf(default_conf):
|
||||
hyperconf = deepcopy(default_conf)
|
||||
hyperconf.update({
|
||||
'hyperopt': 'DefaultHyperOpt',
|
||||
'hyperopt_loss': 'ShortTradeDurHyperOptLoss',
|
||||
'hyperopt_path': str(Path(__file__).parent / 'hyperopts'),
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': ['default'],
|
||||
'hyperopt_jobs': 1,
|
||||
})
|
||||
return hyperconf
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt(hyperopt_conf, mocker):
|
||||
|
||||
patch_exchange(mocker)
|
||||
return Hyperopt(hyperopt_conf)
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt_results():
|
||||
return pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [-0.1, 0.2, 0.3],
|
||||
'profit_abs': [-0.2, 0.4, 0.6],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'sell_reason': [SellType.STOP_LOSS, SellType.ROI, SellType.ROI],
|
||||
'close_date':
|
||||
[
|
||||
datetime(2019, 1, 1, 9, 26, 3, 478039),
|
||||
datetime(2019, 2, 1, 9, 26, 3, 478039),
|
||||
datetime(2019, 3, 1, 9, 26, 3, 478039)
|
||||
]
|
||||
}
|
||||
)
|
@ -2,7 +2,6 @@
|
||||
import locale
|
||||
import logging
|
||||
import re
|
||||
from copy import deepcopy
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
@ -17,58 +16,15 @@ from freqtrade import constants
|
||||
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_hyperopt
|
||||
from freqtrade.data.history import load_data
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.optimize.default_hyperopt_loss import ShortTradeDurHyperOptLoss
|
||||
from freqtrade.optimize.hyperopt import Hyperopt
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
|
||||
patched_configuration_load_config_file)
|
||||
|
||||
from .hyperopts.default_hyperopt import DefaultHyperOpt
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt_conf(default_conf):
|
||||
hyperconf = deepcopy(default_conf)
|
||||
hyperconf.update({
|
||||
'hyperopt': 'DefaultHyperOpt',
|
||||
'hyperopt_loss': 'ShortTradeDurHyperOptLoss',
|
||||
'hyperopt_path': str(Path(__file__).parent / 'hyperopts'),
|
||||
'epochs': 1,
|
||||
'timerange': None,
|
||||
'spaces': ['default'],
|
||||
'hyperopt_jobs': 1,
|
||||
})
|
||||
return hyperconf
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt(hyperopt_conf, mocker):
|
||||
|
||||
patch_exchange(mocker)
|
||||
return Hyperopt(hyperopt_conf)
|
||||
|
||||
|
||||
@pytest.fixture(scope='function')
|
||||
def hyperopt_results():
|
||||
return pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [-0.1, 0.2, 0.3],
|
||||
'profit_abs': [-0.2, 0.4, 0.6],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'sell_reason': [SellType.STOP_LOSS, SellType.ROI, SellType.ROI],
|
||||
'close_date':
|
||||
[
|
||||
datetime(2019, 1, 1, 9, 26, 3, 478039),
|
||||
datetime(2019, 2, 1, 9, 26, 3, 478039),
|
||||
datetime(2019, 3, 1, 9, 26, 3, 478039)
|
||||
]
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
def create_results(mocker, hyperopt, testdatadir) -> List[Dict]:
|
||||
"""
|
||||
@ -230,32 +186,6 @@ def test_hyperoptresolver_noname(default_conf):
|
||||
HyperOptResolver.load_hyperopt(default_conf)
|
||||
|
||||
|
||||
def test_hyperoptlossresolver_noname(default_conf):
|
||||
with pytest.raises(OperationalException,
|
||||
match="No Hyperopt loss set. Please use `--hyperopt-loss` to specify "
|
||||
"the Hyperopt-Loss class to use."):
|
||||
HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
|
||||
|
||||
def test_hyperoptlossresolver(mocker, default_conf) -> None:
|
||||
|
||||
hl = ShortTradeDurHyperOptLoss
|
||||
mocker.patch(
|
||||
'freqtrade.resolvers.hyperopt_resolver.HyperOptLossResolver.load_object',
|
||||
MagicMock(return_value=hl)
|
||||
)
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLossDaily'})
|
||||
x = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
assert hasattr(x, "hyperopt_loss_function")
|
||||
|
||||
|
||||
def test_hyperoptlossresolver_wrongname(default_conf) -> None:
|
||||
default_conf.update({'hyperopt_loss': "NonExistingLossClass"})
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Impossible to load HyperoptLoss.*'):
|
||||
HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
|
||||
|
||||
def test_start_not_installed(mocker, default_conf, import_fails) -> None:
|
||||
start_mock = MagicMock()
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
@ -269,7 +199,8 @@ def test_start_not_installed(mocker, default_conf, import_fails) -> None:
|
||||
'--hyperopt', 'DefaultHyperOpt',
|
||||
'--hyperopt-path',
|
||||
str(Path(__file__).parent / "hyperopts"),
|
||||
'--epochs', '5'
|
||||
'--epochs', '5',
|
||||
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
|
||||
]
|
||||
pargs = get_args(args)
|
||||
|
||||
@ -337,137 +268,6 @@ def test_start_filelock(mocker, hyperopt_conf, caplog) -> None:
|
||||
assert log_has("Another running instance of freqtrade Hyperopt detected.", caplog)
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_correct_trade_count(hyperopt_conf, hyperopt_results) -> None:
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(hyperopt_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(hyperopt_results, 600 + 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(hyperopt_results, 600 - 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over > correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_shorter_trades(hyperopt_conf, hyperopt_results) -> None:
|
||||
resultsb = hyperopt_results.copy()
|
||||
resultsb.loc[1, 'trade_duration'] = 20
|
||||
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(hyperopt_conf)
|
||||
longer = hl.hyperopt_loss_function(hyperopt_results, 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
shorter = hl.hyperopt_loss_function(resultsb, 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert shorter < longer
|
||||
|
||||
|
||||
def test_loss_calculation_has_limited_profit(hyperopt_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(hyperopt_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sharpe_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sharpe_loss_daily_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sortino_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SortinoHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sortino_loss_daily_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SortinoHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'OnlyProfitHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
||||
hyperopt.current_best_loss = 2
|
||||
hyperopt.total_epochs = 2
|
||||
|
165
tests/optimize/test_hyperoptloss.py
Normal file
165
tests/optimize/test_hyperoptloss.py
Normal file
@ -0,0 +1,165 @@
|
||||
from datetime import datetime
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.optimize.default_hyperopt_loss import ShortTradeDurHyperOptLoss
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
|
||||
|
||||
def test_hyperoptlossresolver_noname(default_conf):
|
||||
with pytest.raises(OperationalException,
|
||||
match="No Hyperopt loss set. Please use `--hyperopt-loss` to specify "
|
||||
"the Hyperopt-Loss class to use."):
|
||||
HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
|
||||
|
||||
def test_hyperoptlossresolver(mocker, default_conf) -> None:
|
||||
|
||||
hl = ShortTradeDurHyperOptLoss
|
||||
mocker.patch(
|
||||
'freqtrade.resolvers.hyperopt_resolver.HyperOptLossResolver.load_object',
|
||||
MagicMock(return_value=hl)
|
||||
)
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLossDaily'})
|
||||
x = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
assert hasattr(x, "hyperopt_loss_function")
|
||||
|
||||
|
||||
def test_hyperoptlossresolver_wrongname(default_conf) -> None:
|
||||
default_conf.update({'hyperopt_loss': "NonExistingLossClass"})
|
||||
|
||||
with pytest.raises(OperationalException, match=r'Impossible to load HyperoptLoss.*'):
|
||||
HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_correct_trade_count(hyperopt_conf, hyperopt_results) -> None:
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(hyperopt_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(hyperopt_results, 600 + 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(hyperopt_results, 600 - 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over > correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_loss_calculation_prefer_shorter_trades(hyperopt_conf, hyperopt_results) -> None:
|
||||
resultsb = hyperopt_results.copy()
|
||||
resultsb.loc[1, 'trade_duration'] = 20
|
||||
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(hyperopt_conf)
|
||||
longer = hl.hyperopt_loss_function(hyperopt_results, 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
shorter = hl.hyperopt_loss_function(resultsb, 100,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert shorter < longer
|
||||
|
||||
|
||||
def test_loss_calculation_has_limited_profit(hyperopt_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(hyperopt_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, 600,
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sharpe_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sharpe_loss_daily_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SharpeHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sortino_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SortinoHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_sortino_loss_daily_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'SortinoHyperOptLossDaily'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
||||
|
||||
|
||||
def test_onlyprofit_loss_prefers_higher_profits(default_conf, hyperopt_results) -> None:
|
||||
results_over = hyperopt_results.copy()
|
||||
results_over['profit_percent'] = hyperopt_results['profit_percent'] * 2
|
||||
results_under = hyperopt_results.copy()
|
||||
results_under['profit_percent'] = hyperopt_results['profit_percent'] / 2
|
||||
|
||||
default_conf.update({'hyperopt_loss': 'OnlyProfitHyperOptLoss'})
|
||||
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
|
||||
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
over = hl.hyperopt_loss_function(results_over, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
under = hl.hyperopt_loss_function(results_under, len(hyperopt_results),
|
||||
datetime(2019, 1, 1), datetime(2019, 5, 1))
|
||||
assert over < correct
|
||||
assert under > correct
|
@ -6,7 +6,7 @@ from unittest.mock import MagicMock
|
||||
import pytest
|
||||
|
||||
from freqtrade.commands import Arguments
|
||||
from freqtrade.commands.cli_options import check_int_positive
|
||||
from freqtrade.commands.cli_options import check_int_nonzero, check_int_positive
|
||||
|
||||
|
||||
# Parse common command-line-arguments. Used for all tools
|
||||
@ -249,8 +249,31 @@ def test_check_int_positive() -> None:
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_positive('0')
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_positive(0)
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_positive('3.5')
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_positive('DeadBeef')
|
||||
|
||||
|
||||
def test_check_int_nonzero() -> None:
|
||||
assert check_int_nonzero('3') == 3
|
||||
assert check_int_nonzero('1') == 1
|
||||
assert check_int_nonzero('100') == 100
|
||||
|
||||
assert check_int_nonzero('-2') == -2
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_nonzero('0')
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_nonzero(0)
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_nonzero('3.5')
|
||||
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
check_int_nonzero('DeadBeef')
|
||||
|
@ -74,6 +74,10 @@ def test_sync_wallet_at_boot(mocker, default_conf):
|
||||
freqtrade.wallets.update()
|
||||
assert update_mock.call_count == 1
|
||||
|
||||
assert freqtrade.wallets.get_free('NOCURRENCY') == 0
|
||||
assert freqtrade.wallets.get_used('NOCURRENCY') == 0
|
||||
assert freqtrade.wallets.get_total('NOCURRENCY') == 0
|
||||
|
||||
|
||||
def test_sync_wallet_missing_data(mocker, default_conf):
|
||||
default_conf['dry_run'] = False
|
||||
|
Loading…
Reference in New Issue
Block a user