Merge pull request #3377 from freqtrade/btreport_refactor
Refactor BTReport
This commit is contained in:
commit
04eb11bb5d
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
@ -34,118 +34,173 @@ def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame
|
||||
file_dump_json(filename, records)
|
||||
|
||||
|
||||
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> str:
|
||||
def _get_line_floatfmt() -> List[str]:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
Generate floatformat (goes in line with _generate_result_line())
|
||||
"""
|
||||
return ['s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', 'd', 'd', 'd']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Wins', 'Draws', 'Losses']
|
||||
|
||||
|
||||
def _generate_result_line(result: DataFrame, max_open_trades: int, first_column: str) -> Dict:
|
||||
"""
|
||||
Generate one result dict, with "first_column" as key.
|
||||
"""
|
||||
return {
|
||||
'key': first_column,
|
||||
'trades': len(result.index),
|
||||
'profit_mean': result.profit_percent.mean(),
|
||||
'profit_mean_pct': result.profit_percent.mean() * 100.0,
|
||||
'profit_sum': result.profit_percent.sum(),
|
||||
'profit_sum_pct': result.profit_percent.sum() * 100.0,
|
||||
'profit_total_abs': result.profit_abs.sum(),
|
||||
'profit_total_pct': result.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
'duration_avg': str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))
|
||||
) if not result.empty else '0:00',
|
||||
# 'duration_max': str(timedelta(
|
||||
# minutes=round(result.trade_duration.max()))
|
||||
# ) if not result.empty else '0:00',
|
||||
# 'duration_min': str(timedelta(
|
||||
# minutes=round(result.trade_duration.min()))
|
||||
# ) if not result.empty else '0:00',
|
||||
'wins': len(result[result.profit_abs > 0]),
|
||||
'draws': len(result[result.profit_abs == 0]),
|
||||
'losses': len(result[result.profit_abs < 0]),
|
||||
}
|
||||
|
||||
|
||||
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
||||
"""
|
||||
Generates and returns a list for the given backtest data and the results dataframe
|
||||
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades
|
||||
:param results: Dataframe containing the backtest results
|
||||
:param skip_nan: Print "left open" open trades
|
||||
:return: pretty printed table with tabulate as string
|
||||
:return: List of Dicts containing the metrics per pair
|
||||
"""
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = [
|
||||
'Pair',
|
||||
'Buys',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
'Avg Duration',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses'
|
||||
]
|
||||
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
if skip_nan and result.profit_abs.isnull().all():
|
||||
continue
|
||||
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
result.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs == 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
tabular_data.append(_generate_result_line(result, max_open_trades, pair))
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs == 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
tabular_data.append(_generate_result_line(results, max_open_trades, 'TOTAL'))
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
|
||||
headers = _get_line_header('Pair', stake_currency)
|
||||
floatfmt = _get_line_floatfmt()
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
||||
] for t in pair_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def generate_text_table_sell_reason(stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame) -> str:
|
||||
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param stake_currency: Stakecurrency used
|
||||
:param max_open_trades: Max_open_trades parameter
|
||||
:param results: Dataframe containing the backtest results
|
||||
:return: pretty printed table with tabulate as string
|
||||
:param results: Dataframe containing the backtest result for one strategy
|
||||
:return: List of Dicts containing the metrics per Sell reason
|
||||
"""
|
||||
tabular_data = []
|
||||
headers = [
|
||||
"Sell Reason",
|
||||
"Sells",
|
||||
"Wins",
|
||||
"Draws",
|
||||
"Losses",
|
||||
"Avg Profit %",
|
||||
"Cum Profit %",
|
||||
f"Tot Profit {stake_currency}",
|
||||
"Tot Profit %",
|
||||
]
|
||||
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['sell_reason'] == reason]
|
||||
wins = len(result[result['profit_abs'] > 0])
|
||||
draws = len(result[result['profit_abs'] == 0])
|
||||
loss = len(result[result['profit_abs'] < 0])
|
||||
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
|
||||
profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
|
||||
profit_tot = result['profit_abs'].sum()
|
||||
|
||||
profit_mean = result['profit_percent'].mean()
|
||||
profit_sum = result["profit_percent"].sum()
|
||||
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
|
||||
|
||||
tabular_data.append(
|
||||
[
|
||||
reason.value,
|
||||
count,
|
||||
wins,
|
||||
draws,
|
||||
loss,
|
||||
profit_mean,
|
||||
profit_sum,
|
||||
profit_tot,
|
||||
profit_percent_tot,
|
||||
]
|
||||
{
|
||||
'sell_reason': reason.value,
|
||||
'trades': count,
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
'profit_mean': profit_mean,
|
||||
'profit_mean_pct': round(profit_mean * 100, 2),
|
||||
'profit_sum': profit_sum,
|
||||
'profit_sum_pct': round(profit_sum * 100, 2),
|
||||
'profit_total_abs': result['profit_abs'].sum(),
|
||||
'profit_pct_total': profit_percent_tot,
|
||||
}
|
||||
)
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
|
||||
all_results: Dict) -> str:
|
||||
def generate_text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]],
|
||||
stake_currency: str) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param sell_reason_stats: Sell reason metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
'Sell Reason',
|
||||
'Sells',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
]
|
||||
|
||||
output = [[
|
||||
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
|
||||
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_pct_total'],
|
||||
] for t in sell_reason_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def generate_strategy_metrics(stake_currency: str, max_open_trades: int,
|
||||
all_results: Dict) -> List[Dict]:
|
||||
"""
|
||||
Generate summary per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades used for backtest
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:return: List of Dicts containing the metrics per Strategy
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append(_generate_result_line(results, max_open_trades, strategy))
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
@ -153,34 +208,21 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
floatfmt = _get_line_floatfmt()
|
||||
headers = _get_line_header('Strategy', stake_currency)
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Wins', 'Draws', 'Losses']
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append([
|
||||
strategy,
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs == 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
||||
] for t in strategy_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
||||
tabular_data = []
|
||||
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
||||
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
||||
@ -206,38 +248,48 @@ def generate_edge_table(results: dict) -> str:
|
||||
|
||||
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
|
||||
all_results: Dict[str, DataFrame]):
|
||||
for strategy, results in all_results.items():
|
||||
stake_currency = config['stake_currency']
|
||||
max_open_trades = config['max_open_trades']
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = generate_text_table(btdata, stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
for strategy, results in all_results.items():
|
||||
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
results=results, skip_nan=False)
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
||||
results=results)
|
||||
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
results=results.loc[results['open_at_end']],
|
||||
skip_nan=True)
|
||||
# Print results
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = generate_text_table(pair_results, stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table_sell_reason(stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results)
|
||||
table = generate_text_table_sell_reason(sell_reason_stats=sell_reason_stats,
|
||||
stake_currency=stake_currency,
|
||||
)
|
||||
if isinstance(table, str):
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table(btdata,
|
||||
stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True)
|
||||
table = generate_text_table(left_open_results, stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
if isinstance(table, str):
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print()
|
||||
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
table = generate_text_table_strategy(config['stake_currency'],
|
||||
config['max_open_trades'],
|
||||
strategy_results = generate_strategy_metrics(stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
all_results=all_results)
|
||||
|
||||
table = generate_text_table_strategy(strategy_results, stake_currency)
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
|
@ -658,10 +658,17 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
|
||||
PropertyMock(return_value=['UNITTEST/BTC']))
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
|
||||
gen_table_mock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.optimize_reports.generate_text_table', gen_table_mock)
|
||||
sell_reason_mock = MagicMock()
|
||||
gen_strattable_mock = MagicMock()
|
||||
mocker.patch('freqtrade.optimize.optimize_reports.generate_text_table_strategy',
|
||||
gen_strattable_mock)
|
||||
gen_strat_summary = MagicMock()
|
||||
|
||||
mocker.patch.multiple('freqtrade.optimize.optimize_reports',
|
||||
generate_text_table=gen_table_mock,
|
||||
generate_text_table_strategy=gen_strattable_mock,
|
||||
generate_pair_metrics=MagicMock(),
|
||||
generate_sell_reason_stats=sell_reason_mock,
|
||||
generate_strategy_metrics=gen_strat_summary,
|
||||
)
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
@ -683,6 +690,8 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
|
||||
assert backtestmock.call_count == 2
|
||||
assert gen_table_mock.call_count == 4
|
||||
assert gen_strattable_mock.call_count == 1
|
||||
assert sell_reason_mock.call_count == 2
|
||||
assert gen_strat_summary.call_count == 1
|
||||
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
@ -703,3 +712,92 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
|
||||
|
||||
for line in exists:
|
||||
assert log_has(line, caplog)
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore:deprecated")
|
||||
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
|
||||
|
||||
patch_exchange(mocker)
|
||||
backtestmock = MagicMock(side_effect=[
|
||||
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
|
||||
'profit_percent': [0.0, 0.0],
|
||||
'profit_abs': [0.0, 0.0],
|
||||
'open_time': pd.to_datetime(['2018-01-29 18:40:00',
|
||||
'2018-01-30 03:30:00', ], utc=True
|
||||
),
|
||||
'close_time': pd.to_datetime(['2018-01-29 20:45:00',
|
||||
'2018-01-30 05:35:00', ], utc=True),
|
||||
'open_index': [78, 184],
|
||||
'close_index': [125, 192],
|
||||
'trade_duration': [235, 40],
|
||||
'open_at_end': [False, False],
|
||||
'open_rate': [0.104445, 0.10302485],
|
||||
'close_rate': [0.104969, 0.103541],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI]
|
||||
}),
|
||||
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.03, 0.01, 0.1],
|
||||
'profit_abs': [0.01, 0.02, 0.2],
|
||||
'open_time': pd.to_datetime(['2018-01-29 18:40:00',
|
||||
'2018-01-30 03:30:00',
|
||||
'2018-01-30 05:30:00'], utc=True
|
||||
),
|
||||
'close_time': pd.to_datetime(['2018-01-29 20:45:00',
|
||||
'2018-01-30 05:35:00',
|
||||
'2018-01-30 08:30:00'], utc=True),
|
||||
'open_index': [78, 184, 185],
|
||||
'close_index': [125, 224, 205],
|
||||
'trade_duration': [47, 40, 20],
|
||||
'open_at_end': [False, False, False],
|
||||
'open_rate': [0.104445, 0.10302485, 0.122541],
|
||||
'close_rate': [0.104969, 0.103541, 0.123541],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}),
|
||||
])
|
||||
mocker.patch('freqtrade.pairlist.pairlistmanager.PairListManager.whitelist',
|
||||
PropertyMock(return_value=['UNITTEST/BTC']))
|
||||
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
|
||||
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
args = [
|
||||
'backtesting',
|
||||
'--config', 'config.json',
|
||||
'--datadir', str(testdatadir),
|
||||
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
|
||||
'--ticker-interval', '1m',
|
||||
'--timerange', '1510694220-1510700340',
|
||||
'--enable-position-stacking',
|
||||
'--disable-max-market-positions',
|
||||
'--strategy-list',
|
||||
'DefaultStrategy',
|
||||
'TestStrategyLegacy',
|
||||
]
|
||||
args = get_args(args)
|
||||
start_backtesting(args)
|
||||
|
||||
# check the logs, that will contain the backtest result
|
||||
exists = [
|
||||
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
|
||||
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
|
||||
'Parameter --timerange detected: 1510694220-1510700340 ...',
|
||||
f'Using data directory: {testdatadir} ...',
|
||||
'Using stake_currency: BTC ...',
|
||||
'Using stake_amount: 0.001 ...',
|
||||
'Loading data from 2017-11-14T20:57:00+00:00 '
|
||||
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
|
||||
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
|
||||
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
|
||||
'Parameter --enable-position-stacking detected ...',
|
||||
'Running backtesting for Strategy DefaultStrategy',
|
||||
'Running backtesting for Strategy TestStrategyLegacy',
|
||||
]
|
||||
|
||||
for line in exists:
|
||||
assert log_has(line, caplog)
|
||||
|
||||
captured = capsys.readouterr()
|
||||
assert 'BACKTESTING REPORT' in captured.out
|
||||
assert 'SELL REASON STATS' in captured.out
|
||||
assert 'LEFT OPEN TRADES REPORT' in captured.out
|
||||
assert 'STRATEGY SUMMARY' in captured.out
|
||||
|
@ -1,11 +1,13 @@
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
from arrow import Arrow
|
||||
|
||||
from freqtrade.edge import PairInfo
|
||||
from freqtrade.optimize.optimize_reports import (
|
||||
generate_edge_table, generate_text_table, generate_text_table_sell_reason,
|
||||
generate_pair_metrics, generate_edge_table, generate_sell_reason_stats,
|
||||
generate_text_table, generate_text_table_sell_reason, generate_strategy_metrics,
|
||||
generate_text_table_strategy, store_backtest_result)
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from tests.conftest import patch_exchange
|
||||
@ -35,12 +37,39 @@ def test_generate_text_table(default_conf, mocker):
|
||||
'| TOTAL | 2 | 15.00 | 30.00 | 0.60000000 |'
|
||||
' 15.00 | 0:20:00 | 2 | 0 | 0 |'
|
||||
)
|
||||
assert generate_text_table(data={'ETH/BTC': {}},
|
||||
stake_currency='BTC', max_open_trades=2,
|
||||
results=results) == result_str
|
||||
|
||||
pair_results = generate_pair_metrics(data={'ETH/BTC': {}}, stake_currency='BTC',
|
||||
max_open_trades=2, results=results)
|
||||
assert generate_text_table(pair_results,
|
||||
stake_currency='BTC') == result_str
|
||||
|
||||
|
||||
def test_generate_text_table_sell_reason(default_conf, mocker):
|
||||
def test_generate_pair_metrics(default_conf, mocker):
|
||||
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2],
|
||||
'profit_abs': [0.2, 0.4],
|
||||
'trade_duration': [10, 30],
|
||||
'wins': [2, 0],
|
||||
'draws': [0, 0],
|
||||
'losses': [0, 0]
|
||||
}
|
||||
)
|
||||
|
||||
pair_results = generate_pair_metrics(data={'ETH/BTC': {}}, stake_currency='BTC',
|
||||
max_open_trades=2, results=results)
|
||||
assert isinstance(pair_results, list)
|
||||
assert len(pair_results) == 2
|
||||
assert pair_results[-1]['key'] == 'TOTAL'
|
||||
assert (
|
||||
pytest.approx(pair_results[-1]['profit_mean_pct']) == pair_results[-1]['profit_mean'] * 100)
|
||||
assert (
|
||||
pytest.approx(pair_results[-1]['profit_sum_pct']) == pair_results[-1]['profit_sum'] * 100)
|
||||
|
||||
|
||||
def test_generate_text_table_sell_reason(default_conf):
|
||||
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
@ -65,8 +94,46 @@ def test_generate_text_table_sell_reason(default_conf, mocker):
|
||||
'| stop_loss | 1 | 0 | 0 | 1 |'
|
||||
' -10 | -10 | -0.2 | -5 |'
|
||||
)
|
||||
assert generate_text_table_sell_reason(stake_currency='BTC', max_open_trades=2,
|
||||
results=results) == result_str
|
||||
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=2,
|
||||
results=results)
|
||||
assert generate_text_table_sell_reason(sell_reason_stats=sell_reason_stats,
|
||||
stake_currency='BTC') == result_str
|
||||
|
||||
|
||||
def test_generate_sell_reason_stats(default_conf):
|
||||
|
||||
results = pd.DataFrame(
|
||||
{
|
||||
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
|
||||
'profit_percent': [0.1, 0.2, -0.1],
|
||||
'profit_abs': [0.2, 0.4, -0.2],
|
||||
'trade_duration': [10, 30, 10],
|
||||
'wins': [2, 0, 0],
|
||||
'draws': [0, 0, 0],
|
||||
'losses': [0, 0, 1],
|
||||
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
|
||||
}
|
||||
)
|
||||
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=2,
|
||||
results=results)
|
||||
roi_result = sell_reason_stats[0]
|
||||
assert roi_result['sell_reason'] == 'roi'
|
||||
assert roi_result['trades'] == 2
|
||||
assert pytest.approx(roi_result['profit_mean']) == 0.15
|
||||
assert roi_result['profit_mean_pct'] == round(roi_result['profit_mean'] * 100, 2)
|
||||
assert pytest.approx(roi_result['profit_mean']) == 0.15
|
||||
assert roi_result['profit_mean_pct'] == round(roi_result['profit_mean'] * 100, 2)
|
||||
|
||||
stop_result = sell_reason_stats[1]
|
||||
|
||||
assert stop_result['sell_reason'] == 'stop_loss'
|
||||
assert stop_result['trades'] == 1
|
||||
assert pytest.approx(stop_result['profit_mean']) == -0.1
|
||||
assert stop_result['profit_mean_pct'] == round(stop_result['profit_mean'] * 100, 2)
|
||||
assert pytest.approx(stop_result['profit_mean']) == -0.1
|
||||
assert stop_result['profit_mean_pct'] == round(stop_result['profit_mean'] * 100, 2)
|
||||
|
||||
|
||||
def test_generate_text_table_strategy(default_conf, mocker):
|
||||
@ -106,7 +173,12 @@ def test_generate_text_table_strategy(default_conf, mocker):
|
||||
'| TestStrategy2 | 3 | 30.00 | 90.00 | 1.30000000 |'
|
||||
' 45.00 | 0:20:00 | 3 | 0 | 0 |'
|
||||
)
|
||||
assert generate_text_table_strategy('BTC', 2, all_results=results) == result_str
|
||||
|
||||
strategy_results = generate_strategy_metrics(stake_currency='BTC',
|
||||
max_open_trades=2,
|
||||
all_results=results)
|
||||
|
||||
assert generate_text_table_strategy(strategy_results, 'BTC') == result_str
|
||||
|
||||
|
||||
def test_generate_edge_table(edge_conf, mocker):
|
||||
|
Loading…
Reference in New Issue
Block a user