Merge pull request #3377 from freqtrade/btreport_refactor

Refactor BTReport
This commit is contained in:
Matthias 2020-05-27 19:33:08 +02:00 committed by GitHub
commit 04eb11bb5d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 349 additions and 127 deletions

View File

@ -1,7 +1,7 @@
import logging
from datetime import timedelta
from pathlib import Path
from typing import Dict
from typing import Any, Dict, List
from pandas import DataFrame
from tabulate import tabulate
@ -34,118 +34,173 @@ def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame
file_dump_json(filename, records)
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
results: DataFrame, skip_nan: bool = False) -> str:
def _get_line_floatfmt() -> List[str]:
"""
Generates and returns a text table for the given backtest data and the results dataframe
Generate floatformat (goes in line with _generate_result_line())
"""
return ['s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', 'd', 'd', 'd']
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
"""
Generate header lines (goes in line with _generate_result_line())
"""
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Wins', 'Draws', 'Losses']
def _generate_result_line(result: DataFrame, max_open_trades: int, first_column: str) -> Dict:
"""
Generate one result dict, with "first_column" as key.
"""
return {
'key': first_column,
'trades': len(result.index),
'profit_mean': result.profit_percent.mean(),
'profit_mean_pct': result.profit_percent.mean() * 100.0,
'profit_sum': result.profit_percent.sum(),
'profit_sum_pct': result.profit_percent.sum() * 100.0,
'profit_total_abs': result.profit_abs.sum(),
'profit_total_pct': result.profit_percent.sum() * 100.0 / max_open_trades,
'duration_avg': str(timedelta(
minutes=round(result.trade_duration.mean()))
) if not result.empty else '0:00',
# 'duration_max': str(timedelta(
# minutes=round(result.trade_duration.max()))
# ) if not result.empty else '0:00',
# 'duration_min': str(timedelta(
# minutes=round(result.trade_duration.min()))
# ) if not result.empty else '0:00',
'wins': len(result[result.profit_abs > 0]),
'draws': len(result[result.profit_abs == 0]),
'losses': len(result[result.profit_abs < 0]),
}
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
"""
Generates and returns a list for the given backtest data and the results dataframe
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades
:param results: Dataframe containing the backtest results
:param skip_nan: Print "left open" open trades
:return: pretty printed table with tabulate as string
:return: List of Dicts containing the metrics per pair
"""
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = [
'Pair',
'Buys',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
'Avg Duration',
'Wins',
'Draws',
'Losses'
]
for pair in data:
result = results[results.pair == pair]
if skip_nan and result.profit_abs.isnull().all():
continue
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_percent.sum() * 100.0,
result.profit_abs.sum(),
result.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs == 0]),
len(result[result.profit_abs < 0])
])
tabular_data.append(_generate_result_line(result, max_open_trades, pair))
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0])
])
tabular_data.append(_generate_result_line(results, max_open_trades, 'TOTAL'))
return tabular_data
def generate_text_table(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
:param stake_currency: stake-currency - used to correctly name headers
:return: pretty printed table with tabulate as string
"""
headers = _get_line_header('Pair', stake_currency)
floatfmt = _get_line_floatfmt()
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
] for t in pair_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def generate_text_table_sell_reason(stake_currency: str, max_open_trades: int,
results: DataFrame) -> str:
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
"""
Generate small table outlining Backtest results
:param stake_currency: Stakecurrency used
:param max_open_trades: Max_open_trades parameter
:param results: Dataframe containing the backtest results
:return: pretty printed table with tabulate as string
:param results: Dataframe containing the backtest result for one strategy
:return: List of Dicts containing the metrics per Sell reason
"""
tabular_data = []
headers = [
"Sell Reason",
"Sells",
"Wins",
"Draws",
"Losses",
"Avg Profit %",
"Cum Profit %",
f"Tot Profit {stake_currency}",
"Tot Profit %",
]
for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason]
wins = len(result[result['profit_abs'] > 0])
draws = len(result[result['profit_abs'] == 0])
loss = len(result[result['profit_abs'] < 0])
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
profit_tot = result['profit_abs'].sum()
profit_mean = result['profit_percent'].mean()
profit_sum = result["profit_percent"].sum()
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
tabular_data.append(
[
reason.value,
count,
wins,
draws,
loss,
profit_mean,
profit_sum,
profit_tot,
profit_percent_tot,
]
{
'sell_reason': reason.value,
'trades': count,
'wins': len(result[result['profit_abs'] > 0]),
'draws': len(result[result['profit_abs'] == 0]),
'losses': len(result[result['profit_abs'] < 0]),
'profit_mean': profit_mean,
'profit_mean_pct': round(profit_mean * 100, 2),
'profit_sum': profit_sum,
'profit_sum_pct': round(profit_sum * 100, 2),
'profit_total_abs': result['profit_abs'].sum(),
'profit_pct_total': profit_percent_tot,
}
)
return tabulate(tabular_data, headers=headers, tablefmt="orgtbl", stralign="right")
return tabular_data
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
all_results: Dict) -> str:
def generate_text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]],
stake_currency: str) -> str:
"""
Generate small table outlining Backtest results
:param sell_reason_stats: Sell reason metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
'Sell Reason',
'Sells',
'Wins',
'Draws',
'Losses',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
]
output = [[
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_pct_total'],
] for t in sell_reason_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def generate_strategy_metrics(stake_currency: str, max_open_trades: int,
all_results: Dict) -> List[Dict]:
"""
Generate summary per strategy
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades used for backtest
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
:return: List of Dicts containing the metrics per Strategy
"""
tabular_data = []
for strategy, results in all_results.items():
tabular_data.append(_generate_result_line(results, max_open_trades, strategy))
return tabular_data
def generate_text_table_strategy(strategy_results, stake_currency: str) -> str:
"""
Generate summary table per strategy
:param stake_currency: stake-currency - used to correctly name headers
@ -153,34 +208,21 @@ def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
:return: pretty printed table with tabulate as string
"""
floatfmt = _get_line_floatfmt()
headers = _get_line_header('Strategy', stake_currency)
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Wins', 'Draws', 'Losses']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0])
])
output = [[
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
] for t in strategy_results]
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
return tabulate(output, headers=headers,
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
tabular_data = []
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
@ -206,38 +248,48 @@ def generate_edge_table(results: dict) -> str:
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
all_results: Dict[str, DataFrame]):
for strategy, results in all_results.items():
stake_currency = config['stake_currency']
max_open_trades = config['max_open_trades']
for strategy, results in all_results.items():
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
max_open_trades=max_open_trades,
results=results, skip_nan=False)
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
max_open_trades=max_open_trades,
results=results.loc[results['open_at_end']],
skip_nan=True)
# Print results
print(f"Result for strategy {strategy}")
table = generate_text_table(btdata, stake_currency=config['stake_currency'],
max_open_trades=config['max_open_trades'],
results=results)
table = generate_text_table(pair_results, stake_currency=stake_currency)
if isinstance(table, str):
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
table = generate_text_table_sell_reason(stake_currency=config['stake_currency'],
max_open_trades=config['max_open_trades'],
results=results)
table = generate_text_table_sell_reason(sell_reason_stats=sell_reason_stats,
stake_currency=stake_currency,
)
if isinstance(table, str):
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
print(table)
table = generate_text_table(btdata,
stake_currency=config['stake_currency'],
max_open_trades=config['max_open_trades'],
results=results.loc[results.open_at_end], skip_nan=True)
table = generate_text_table(left_open_results, stake_currency=stake_currency)
if isinstance(table, str):
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
if isinstance(table, str):
print('=' * len(table.splitlines()[0]))
print()
if len(all_results) > 1:
# Print Strategy summary table
table = generate_text_table_strategy(config['stake_currency'],
config['max_open_trades'],
all_results=all_results)
strategy_results = generate_strategy_metrics(stake_currency=stake_currency,
max_open_trades=max_open_trades,
all_results=all_results)
table = generate_text_table_strategy(strategy_results, stake_currency)
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)
print('=' * len(table.splitlines()[0]))

View File

@ -658,10 +658,17 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
gen_table_mock = MagicMock()
mocker.patch('freqtrade.optimize.optimize_reports.generate_text_table', gen_table_mock)
sell_reason_mock = MagicMock()
gen_strattable_mock = MagicMock()
mocker.patch('freqtrade.optimize.optimize_reports.generate_text_table_strategy',
gen_strattable_mock)
gen_strat_summary = MagicMock()
mocker.patch.multiple('freqtrade.optimize.optimize_reports',
generate_text_table=gen_table_mock,
generate_text_table_strategy=gen_strattable_mock,
generate_pair_metrics=MagicMock(),
generate_sell_reason_stats=sell_reason_mock,
generate_strategy_metrics=gen_strat_summary,
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
@ -683,6 +690,8 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
assert backtestmock.call_count == 2
assert gen_table_mock.call_count == 4
assert gen_strattable_mock.call_count == 1
assert sell_reason_mock.call_count == 2
assert gen_strat_summary.call_count == 1
# check the logs, that will contain the backtest result
exists = [
@ -703,3 +712,92 @@ def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
patch_exchange(mocker)
backtestmock = MagicMock(side_effect=[
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
'profit_percent': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_time': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00', ], utc=True
),
'close_time': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00', ], utc=True),
'open_index': [78, 184],
'close_index': [125, 192],
'trade_duration': [235, 40],
'open_at_end': [False, False],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
}),
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
'profit_percent': [0.03, 0.01, 0.1],
'profit_abs': [0.01, 0.02, 0.2],
'open_time': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00',
'2018-01-30 05:30:00'], utc=True
),
'close_time': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00',
'2018-01-30 08:30:00'], utc=True),
'open_index': [78, 184, 185],
'close_index': [125, 224, 205],
'trade_duration': [47, 40, 20],
'open_at_end': [False, False, False],
'open_rate': [0.104445, 0.10302485, 0.122541],
'close_rate': [0.104969, 0.103541, 0.123541],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}),
])
mocker.patch('freqtrade.pairlist.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--ticker-interval', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Loading data from 2017-11-14T20:57:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert 'BACKTESTING REPORT' in captured.out
assert 'SELL REASON STATS' in captured.out
assert 'LEFT OPEN TRADES REPORT' in captured.out
assert 'STRATEGY SUMMARY' in captured.out

View File

@ -1,11 +1,13 @@
from pathlib import Path
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade.edge import PairInfo
from freqtrade.optimize.optimize_reports import (
generate_edge_table, generate_text_table, generate_text_table_sell_reason,
generate_pair_metrics, generate_edge_table, generate_sell_reason_stats,
generate_text_table, generate_text_table_sell_reason, generate_strategy_metrics,
generate_text_table_strategy, store_backtest_result)
from freqtrade.strategy.interface import SellType
from tests.conftest import patch_exchange
@ -35,12 +37,39 @@ def test_generate_text_table(default_conf, mocker):
'| TOTAL | 2 | 15.00 | 30.00 | 0.60000000 |'
' 15.00 | 0:20:00 | 2 | 0 | 0 |'
)
assert generate_text_table(data={'ETH/BTC': {}},
stake_currency='BTC', max_open_trades=2,
results=results) == result_str
pair_results = generate_pair_metrics(data={'ETH/BTC': {}}, stake_currency='BTC',
max_open_trades=2, results=results)
assert generate_text_table(pair_results,
stake_currency='BTC') == result_str
def test_generate_text_table_sell_reason(default_conf, mocker):
def test_generate_pair_metrics(default_conf, mocker):
results = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2],
'profit_abs': [0.2, 0.4],
'trade_duration': [10, 30],
'wins': [2, 0],
'draws': [0, 0],
'losses': [0, 0]
}
)
pair_results = generate_pair_metrics(data={'ETH/BTC': {}}, stake_currency='BTC',
max_open_trades=2, results=results)
assert isinstance(pair_results, list)
assert len(pair_results) == 2
assert pair_results[-1]['key'] == 'TOTAL'
assert (
pytest.approx(pair_results[-1]['profit_mean_pct']) == pair_results[-1]['profit_mean'] * 100)
assert (
pytest.approx(pair_results[-1]['profit_sum_pct']) == pair_results[-1]['profit_sum'] * 100)
def test_generate_text_table_sell_reason(default_conf):
results = pd.DataFrame(
{
@ -65,8 +94,46 @@ def test_generate_text_table_sell_reason(default_conf, mocker):
'| stop_loss | 1 | 0 | 0 | 1 |'
' -10 | -10 | -0.2 | -5 |'
)
assert generate_text_table_sell_reason(stake_currency='BTC', max_open_trades=2,
results=results) == result_str
sell_reason_stats = generate_sell_reason_stats(max_open_trades=2,
results=results)
assert generate_text_table_sell_reason(sell_reason_stats=sell_reason_stats,
stake_currency='BTC') == result_str
def test_generate_sell_reason_stats(default_conf):
results = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, -0.1],
'profit_abs': [0.2, 0.4, -0.2],
'trade_duration': [10, 30, 10],
'wins': [2, 0, 0],
'draws': [0, 0, 0],
'losses': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
sell_reason_stats = generate_sell_reason_stats(max_open_trades=2,
results=results)
roi_result = sell_reason_stats[0]
assert roi_result['sell_reason'] == 'roi'
assert roi_result['trades'] == 2
assert pytest.approx(roi_result['profit_mean']) == 0.15
assert roi_result['profit_mean_pct'] == round(roi_result['profit_mean'] * 100, 2)
assert pytest.approx(roi_result['profit_mean']) == 0.15
assert roi_result['profit_mean_pct'] == round(roi_result['profit_mean'] * 100, 2)
stop_result = sell_reason_stats[1]
assert stop_result['sell_reason'] == 'stop_loss'
assert stop_result['trades'] == 1
assert pytest.approx(stop_result['profit_mean']) == -0.1
assert stop_result['profit_mean_pct'] == round(stop_result['profit_mean'] * 100, 2)
assert pytest.approx(stop_result['profit_mean']) == -0.1
assert stop_result['profit_mean_pct'] == round(stop_result['profit_mean'] * 100, 2)
def test_generate_text_table_strategy(default_conf, mocker):
@ -106,7 +173,12 @@ def test_generate_text_table_strategy(default_conf, mocker):
'| TestStrategy2 | 3 | 30.00 | 90.00 | 1.30000000 |'
' 45.00 | 0:20:00 | 3 | 0 | 0 |'
)
assert generate_text_table_strategy('BTC', 2, all_results=results) == result_str
strategy_results = generate_strategy_metrics(stake_currency='BTC',
max_open_trades=2,
all_results=results)
assert generate_text_table_strategy(strategy_results, 'BTC') == result_str
def test_generate_edge_table(edge_conf, mocker):