2022-07-02 16:09:38 +00:00
|
|
|
import logging
|
2022-07-11 09:33:59 +00:00
|
|
|
from typing import Any, Dict
|
2022-07-02 16:09:38 +00:00
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
from catboost import CatBoostRegressor, Pool
|
2022-09-07 16:58:55 +00:00
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel
|
|
|
|
from freqtrade.freqai.base_models.FreqaiMultiOutputRegressor import FreqaiMultiOutputRegressor
|
2022-09-06 18:30:37 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-07-02 16:09:38 +00:00
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-07-09 08:13:33 +00:00
|
|
|
class CatboostRegressorMultiTarget(BaseRegressionModel):
|
2022-07-02 16:09:38 +00:00
|
|
|
"""
|
|
|
|
User created prediction model. The class needs to override three necessary
|
|
|
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
|
|
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
|
|
|
"""
|
|
|
|
|
2022-09-07 16:58:55 +00:00
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
2022-07-02 16:09:38 +00:00
|
|
|
"""
|
|
|
|
User sets up the training and test data to fit their desired model here
|
2022-07-24 14:54:39 +00:00
|
|
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
|
|
|
all the training and test data/labels.
|
2022-07-02 16:09:38 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
cbr = CatBoostRegressor(
|
2022-10-06 16:59:35 +00:00
|
|
|
allow_writing_files=True,
|
|
|
|
train_dir=dk.data_path,
|
2022-07-03 08:59:38 +00:00
|
|
|
**self.model_training_parameters,
|
2022-07-02 16:09:38 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
X = data_dictionary["train_features"]
|
|
|
|
y = data_dictionary["train_labels"]
|
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
sample_weight = data_dictionary["train_weights"]
|
2022-09-06 18:30:37 +00:00
|
|
|
|
2022-09-10 14:54:13 +00:00
|
|
|
eval_sets = [None] * y.shape[1]
|
2022-07-25 17:40:13 +00:00
|
|
|
|
|
|
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
2022-09-10 14:54:13 +00:00
|
|
|
eval_sets = [None] * data_dictionary['test_labels'].shape[1]
|
|
|
|
|
|
|
|
for i in range(data_dictionary['test_labels'].shape[1]):
|
|
|
|
eval_sets[i] = Pool(
|
|
|
|
data=data_dictionary["test_features"],
|
|
|
|
label=data_dictionary["test_labels"].iloc[:, i],
|
|
|
|
weight=data_dictionary["test_weights"],
|
|
|
|
)
|
|
|
|
|
|
|
|
init_model = self.get_init_model(dk.pair)
|
|
|
|
|
|
|
|
if init_model:
|
|
|
|
init_models = init_model.estimators_
|
|
|
|
else:
|
|
|
|
init_models = [None] * y.shape[1]
|
|
|
|
|
|
|
|
fit_params = []
|
|
|
|
for i in range(len(eval_sets)):
|
|
|
|
fit_params.append(
|
|
|
|
{'eval_set': eval_sets[i], 'init_model': init_models[i]})
|
|
|
|
|
|
|
|
model = FreqaiMultiOutputRegressor(estimator=cbr)
|
2022-09-10 20:16:49 +00:00
|
|
|
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
|
|
|
|
if thread_training:
|
|
|
|
model.n_jobs = y.shape[1]
|
2022-09-10 14:54:13 +00:00
|
|
|
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
|
|
|
|
|
2022-07-02 16:09:38 +00:00
|
|
|
return model
|