127 lines
5.0 KiB
Python
127 lines
5.0 KiB
Python
|
import logging
|
||
|
from typing import Any, Dict, Tuple
|
||
|
|
||
|
from catboost import CatBoostRegressor # , Pool
|
||
|
from pandas import DataFrame
|
||
|
from sklearn.multioutput import MultiOutputRegressor
|
||
|
|
||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class CatboostPredictionMultiModel(IFreqaiModel):
|
||
|
"""
|
||
|
User created prediction model. The class needs to override three necessary
|
||
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
||
|
"""
|
||
|
|
||
|
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
|
||
|
"""
|
||
|
User uses this function to add any additional return values to the dataframe.
|
||
|
e.g.
|
||
|
dataframe['volatility'] = dk.volatility_values
|
||
|
"""
|
||
|
|
||
|
return dataframe
|
||
|
|
||
|
def train(self, unfiltered_dataframe: DataFrame,
|
||
|
pair: str, dk: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||
|
"""
|
||
|
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
||
|
for storing, saving, loading, and analyzing the data.
|
||
|
:params:
|
||
|
:unfiltered_dataframe: Full dataframe for the current training period
|
||
|
:metadata: pair metadata from strategy.
|
||
|
:returns:
|
||
|
:model: Trained model which can be used to inference (self.predict)
|
||
|
"""
|
||
|
|
||
|
logger.info('--------------------Starting training '
|
||
|
f'{pair} --------------------')
|
||
|
|
||
|
# unfiltered_labels = self.make_labels(unfiltered_dataframe, dk)
|
||
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
||
|
features_filtered, labels_filtered = dk.filter_features(
|
||
|
unfiltered_dataframe,
|
||
|
dk.training_features_list,
|
||
|
dk.label_list,
|
||
|
training_filter=True,
|
||
|
)
|
||
|
|
||
|
# split data into train/test data.
|
||
|
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||
|
dk.fit_labels() # fit labels to a cauchy distribution so we know what to expect in strategy
|
||
|
# normalize all data based on train_dataset only
|
||
|
data_dictionary = dk.normalize_data(data_dictionary)
|
||
|
|
||
|
# optional additional data cleaning/analysis
|
||
|
self.data_cleaning_train(dk)
|
||
|
|
||
|
logger.info(f'Training model on {len(dk.data_dictionary["train_features"].columns)}'
|
||
|
' features')
|
||
|
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||
|
|
||
|
model = self.fit(data_dictionary)
|
||
|
|
||
|
logger.info(f'--------------------done training {pair}--------------------')
|
||
|
|
||
|
return model
|
||
|
|
||
|
def fit(self, data_dictionary: Dict) -> Any:
|
||
|
"""
|
||
|
User sets up the training and test data to fit their desired model here
|
||
|
:params:
|
||
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||
|
all the training and test data/labels.
|
||
|
"""
|
||
|
|
||
|
cbr = CatBoostRegressor(
|
||
|
allow_writing_files=False, gpu_ram_part=0.5,
|
||
|
verbose=100, early_stopping_rounds=400, **self.model_training_parameters
|
||
|
)
|
||
|
|
||
|
X = data_dictionary["train_features"]
|
||
|
y = data_dictionary["train_labels"]
|
||
|
# eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||
|
sample_weight = data_dictionary['train_weights']
|
||
|
|
||
|
model = MultiOutputRegressor(estimator=cbr)
|
||
|
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def predict(self, unfiltered_dataframe: DataFrame,
|
||
|
dk: FreqaiDataKitchen, first: bool = False) -> Tuple[DataFrame, DataFrame]:
|
||
|
"""
|
||
|
Filter the prediction features data and predict with it.
|
||
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||
|
:return:
|
||
|
:pred_df: dataframe containing the predictions
|
||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||
|
"""
|
||
|
|
||
|
dk.find_features(unfiltered_dataframe)
|
||
|
filtered_dataframe, _ = dk.filter_features(
|
||
|
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||
|
)
|
||
|
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||
|
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||
|
|
||
|
# optional additional data cleaning/analysis
|
||
|
self.data_cleaning_predict(dk, filtered_dataframe)
|
||
|
|
||
|
predictions = self.model.predict(dk.data_dictionary["prediction_features"])
|
||
|
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||
|
|
||
|
for label in dk.label_list:
|
||
|
pred_df[label] = ((pred_df[label] + 1) *
|
||
|
(dk.data["labels_max"][label] -
|
||
|
dk.data["labels_min"][label]) / 2) + dk.data["labels_min"][label]
|
||
|
|
||
|
return (pred_df, dk.do_predict)
|