2022-07-19 14:16:44 +00:00
|
|
|
from copy import deepcopy
|
|
|
|
from pathlib import Path
|
|
|
|
|
2022-07-24 05:32:13 +00:00
|
|
|
import pytest
|
|
|
|
|
2022-07-20 10:56:46 +00:00
|
|
|
from freqtrade.configuration import TimeRange
|
|
|
|
from freqtrade.data.dataprovider import DataProvider
|
2022-07-26 08:24:14 +00:00
|
|
|
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
2022-07-26 08:51:39 +00:00
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
2022-07-19 14:16:44 +00:00
|
|
|
from freqtrade.resolvers import StrategyResolver
|
|
|
|
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
2022-07-20 10:56:46 +00:00
|
|
|
from tests.conftest import get_patched_exchange
|
2022-07-19 14:16:44 +00:00
|
|
|
|
|
|
|
|
2022-07-24 05:32:13 +00:00
|
|
|
@pytest.fixture(scope="function")
|
|
|
|
def freqai_conf(default_conf, tmpdir):
|
2022-07-19 14:16:44 +00:00
|
|
|
freqaiconf = deepcopy(default_conf)
|
|
|
|
freqaiconf.update(
|
|
|
|
{
|
|
|
|
"datadir": Path(default_conf["datadir"]),
|
2022-07-20 12:39:28 +00:00
|
|
|
"strategy": "freqai_test_strat",
|
2022-07-24 05:32:13 +00:00
|
|
|
"user_data_dir": Path(tmpdir),
|
2022-07-20 12:39:28 +00:00
|
|
|
"strategy-path": "freqtrade/tests/strategy/strats",
|
2022-07-09 08:13:33 +00:00
|
|
|
"freqaimodel": "LightGBMRegressor",
|
2022-07-19 14:16:44 +00:00
|
|
|
"freqaimodel_path": "freqai/prediction_models",
|
|
|
|
"timerange": "20180110-20180115",
|
|
|
|
"freqai": {
|
2022-08-13 07:56:21 +00:00
|
|
|
"enabled": True,
|
2022-07-19 14:16:44 +00:00
|
|
|
"startup_candles": 10000,
|
|
|
|
"purge_old_models": True,
|
2022-07-20 10:56:46 +00:00
|
|
|
"train_period_days": 5,
|
|
|
|
"backtest_period_days": 2,
|
2022-07-19 14:16:44 +00:00
|
|
|
"live_retrain_hours": 0,
|
2022-07-20 10:56:46 +00:00
|
|
|
"expiration_hours": 1,
|
|
|
|
"identifier": "uniqe-id100",
|
2022-07-19 14:16:44 +00:00
|
|
|
"live_trained_timestamp": 0,
|
|
|
|
"feature_parameters": {
|
|
|
|
"include_timeframes": ["5m"],
|
|
|
|
"include_corr_pairlist": ["ADA/BTC", "DASH/BTC"],
|
|
|
|
"label_period_candles": 20,
|
2022-07-20 10:56:46 +00:00
|
|
|
"include_shifted_candles": 1,
|
2022-07-19 14:16:44 +00:00
|
|
|
"DI_threshold": 0.9,
|
|
|
|
"weight_factor": 0.9,
|
|
|
|
"principal_component_analysis": False,
|
|
|
|
"use_SVM_to_remove_outliers": True,
|
|
|
|
"stratify_training_data": 0,
|
|
|
|
"indicator_periods_candles": [10],
|
|
|
|
},
|
|
|
|
"data_split_parameters": {"test_size": 0.33, "random_state": 1},
|
2022-08-06 11:51:19 +00:00
|
|
|
"model_training_parameters": {"n_estimators": 100},
|
2022-07-19 14:16:44 +00:00
|
|
|
},
|
2022-07-31 11:20:11 +00:00
|
|
|
"config_files": [Path('config_examples', 'config_freqai.example.json')]
|
2022-07-19 14:16:44 +00:00
|
|
|
}
|
|
|
|
)
|
|
|
|
freqaiconf['exchange'].update({'pair_whitelist': ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
|
|
|
|
return freqaiconf
|
|
|
|
|
|
|
|
|
|
|
|
def get_patched_data_kitchen(mocker, freqaiconf):
|
2022-07-26 08:24:14 +00:00
|
|
|
dk = FreqaiDataKitchen(freqaiconf)
|
2022-07-19 14:16:44 +00:00
|
|
|
return dk
|
|
|
|
|
|
|
|
|
2022-07-26 08:24:14 +00:00
|
|
|
def get_patched_data_drawer(mocker, freqaiconf):
|
|
|
|
# dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock())
|
|
|
|
dd = FreqaiDataDrawer(freqaiconf)
|
|
|
|
return dd
|
|
|
|
|
|
|
|
|
2022-07-20 10:56:46 +00:00
|
|
|
def get_patched_freqai_strategy(mocker, freqaiconf):
|
2022-07-19 14:16:44 +00:00
|
|
|
strategy = StrategyResolver.load_strategy(freqaiconf)
|
2022-07-23 14:05:25 +00:00
|
|
|
strategy.ft_bot_start()
|
2022-07-19 14:16:44 +00:00
|
|
|
|
|
|
|
return strategy
|
|
|
|
|
|
|
|
|
|
|
|
def get_patched_freqaimodel(mocker, freqaiconf):
|
|
|
|
freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf)
|
|
|
|
|
|
|
|
return freqaimodel
|
2022-07-20 10:56:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_freqai_live_analyzed_dataframe(mocker, freqaiconf):
|
|
|
|
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
|
|
|
|
exchange = get_patched_exchange(mocker, freqaiconf)
|
|
|
|
strategy.dp = DataProvider(freqaiconf, exchange)
|
2022-07-23 14:06:46 +00:00
|
|
|
freqai = strategy.freqai
|
2022-07-20 10:56:46 +00:00
|
|
|
freqai.live = True
|
|
|
|
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
|
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
|
|
freqai.dk.load_all_pair_histories(timerange)
|
|
|
|
|
|
|
|
strategy.analyze_pair('ADA/BTC', '5m')
|
|
|
|
return strategy.dp.get_analyzed_dataframe('ADA/BTC', '5m')
|
|
|
|
|
|
|
|
|
|
|
|
def get_freqai_analyzed_dataframe(mocker, freqaiconf):
|
|
|
|
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
|
|
|
|
exchange = get_patched_exchange(mocker, freqaiconf)
|
|
|
|
strategy.dp = DataProvider(freqaiconf, exchange)
|
|
|
|
strategy.freqai_info = freqaiconf.get("freqai", {})
|
2022-07-23 14:06:46 +00:00
|
|
|
freqai = strategy.freqai
|
2022-07-20 10:56:46 +00:00
|
|
|
freqai.live = True
|
|
|
|
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
|
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
|
|
freqai.dk.load_all_pair_histories(timerange)
|
|
|
|
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
|
|
|
|
corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC")
|
|
|
|
|
|
|
|
return freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, 'LTC/BTC')
|
|
|
|
|
|
|
|
|
|
|
|
def get_ready_to_train(mocker, freqaiconf):
|
|
|
|
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
|
|
|
|
exchange = get_patched_exchange(mocker, freqaiconf)
|
|
|
|
strategy.dp = DataProvider(freqaiconf, exchange)
|
|
|
|
strategy.freqai_info = freqaiconf.get("freqai", {})
|
2022-07-23 14:06:46 +00:00
|
|
|
freqai = strategy.freqai
|
2022-07-20 10:56:46 +00:00
|
|
|
freqai.live = True
|
|
|
|
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
|
|
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
|
|
|
freqai.dk.load_all_pair_histories(timerange)
|
|
|
|
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
|
|
|
|
corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC")
|
|
|
|
return corr_df, base_df, freqai, strategy
|