stable/user_data/strategies/Long.py

95 lines
2.8 KiB
Python
Raw Normal View History

# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from typing import Dict, List
from hyperopt import hp
from functools import reduce
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy # noqa
class Long(IStrategy):
"""
author@: Gert Wohlgemuth
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"60": 0.05,
"30": 0.06,
"20": 0.07,
"0": 0.08
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.15
# Optimal ticker interval for the strategy
2018-04-25 16:09:13 +00:00
ticker_interval = 60
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['cci'] = ta.CCI(dataframe)
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=50)
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['macd'] > dataframe['macdsignal']) &
(dataframe['macd'] > 0) &
(dataframe['cci'] <= 0.0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
# (dataframe['tema'] < dataframe['close'])
(dataframe['sar'] > dataframe['close']) &
(dataframe['fisher_rsi'] > 0.3)
),
'sell'] = 1
return dataframe