stable/freqtrade/templates/sample_strategy.py

404 lines
16 KiB
Python
Raw Normal View History

2019-11-21 05:49:16 +00:00
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# flake8: noqa: F401
2020-09-28 17:39:41 +00:00
# isort: skip_file
2018-01-15 08:35:11 +00:00
# --- Do not remove these libs ---
2019-11-21 05:49:16 +00:00
import numpy as np # noqa
import pandas as pd # noqa
2018-01-15 08:35:11 +00:00
from pandas import DataFrame
2021-08-04 18:52:56 +00:00
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,
IStrategy, IntParameter)
2019-11-21 05:49:16 +00:00
# --------------------------------
2018-01-15 08:35:11 +00:00
# Add your lib to import here
import talib.abstract as ta
2018-01-18 07:06:37 +00:00
import freqtrade.vendor.qtpylib.indicators as qtpylib
2018-01-15 08:35:11 +00:00
2018-01-18 07:06:37 +00:00
# This class is a sample. Feel free to customize it.
2019-08-27 04:41:07 +00:00
class SampleStrategy(IStrategy):
2018-01-15 08:35:11 +00:00
"""
2019-08-28 04:07:18 +00:00
This is a sample strategy to inspire you.
2021-02-06 14:43:50 +00:00
More information in https://www.freqtrade.io/en/latest/strategy-customization/
2018-01-18 07:06:37 +00:00
2018-01-15 08:35:11 +00:00
You can:
2018-07-25 06:54:01 +00:00
:return: a Dataframe with all mandatory indicators for the strategies
2018-01-15 08:35:11 +00:00
- Rename the class name (Do not forget to update class_name)
- Add any methods you want to build your strategy
- Add any lib you need to build your strategy
You must keep:
- the lib in the section "Do not remove these libs"
2021-03-28 18:06:30 +00:00
- the methods: populate_indicators, populate_buy_trend, populate_sell_trend
You should keep:
- timeframe, minimal_roi, stoploss, trailing_*
2018-01-15 08:35:11 +00:00
"""
# Strategy interface version - allow new iterations of the strategy interface.
2019-08-26 17:44:33 +00:00
# Check the documentation or the Sample strategy to get the latest version.
INTERFACE_VERSION = 2
2018-01-15 08:35:11 +00:00
2022-03-12 06:00:57 +00:00
# Can this strategy go short?
can_short: bool = False
2018-01-15 08:35:11 +00:00
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi".
2018-01-15 08:35:11 +00:00
minimal_roi = {
"60": 0.01,
"30": 0.02,
2018-01-15 08:35:11 +00:00
"0": 0.04
}
# Optimal stoploss designed for the strategy.
# This attribute will be overridden if the config file contains "stoploss".
2018-01-15 08:35:11 +00:00
stoploss = -0.10
# Trailing stoploss
trailing_stop = False
# trailing_only_offset_is_reached = False
# trailing_stop_positive = 0.01
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
# Optimal timeframe for the strategy.
timeframe = '5m'
# Run "populate_indicators()" only for new candle.
2019-05-29 12:17:09 +00:00
process_only_new_candles = False
2018-08-09 17:24:00 +00:00
# These values can be overridden in the "ask_strategy" section in the config.
use_sell_signal = True
sell_profit_only = False
ignore_roi_if_buy_signal = False
2022-03-12 06:00:57 +00:00
# Hyperoptable parameters
buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True)
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 30
# Optional order type mapping.
2018-11-17 09:26:15 +00:00
order_types = {
'buy': 'limit',
'sell': 'limit',
2018-11-25 18:03:28 +00:00
'stoploss': 'market',
'stoploss_on_exchange': False
2018-11-17 09:26:15 +00:00
}
# Optional order time in force.
2018-11-25 21:08:42 +00:00
order_time_in_force = {
'entry': 'gtc',
'exit': 'gtc'
2018-11-25 21:02:59 +00:00
}
2020-01-08 18:35:00 +00:00
plot_config = {
'main_plot': {
'tema': {},
'sar': {'color': 'white'},
},
'subplots': {
"MACD": {
'macd': {'color': 'blue'},
'macdsignal': {'color': 'orange'},
},
"RSI": {
'rsi': {'color': 'red'},
}
}
}
def informative_pairs(self):
2019-01-21 19:22:27 +00:00
"""
Define additional, informative pair/interval combinations to be cached from the exchange.
2019-01-21 19:22:27 +00:00
These pair/interval combinations are non-tradeable, unless they are part
of the whitelist as well.
For more information, please consult the documentation
:return: List of tuples in the format (pair, interval)
Sample: return [("ETH/USDT", "5m"),
("BTC/USDT", "15m"),
]
"""
return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
2018-07-25 06:54:01 +00:00
:return: a Dataframe with all mandatory indicators for the strategies
2018-01-15 08:35:11 +00:00
"""
2019-10-15 18:11:41 +00:00
# Momentum Indicators
2018-01-18 07:06:37 +00:00
# ------------------------------------
2019-10-15 18:11:41 +00:00
# ADX
dataframe['adx'] = ta.ADX(dataframe)
2020-02-23 15:22:19 +00:00
# # Plus Directional Indicator / Movement
# dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
# dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# # Minus Directional Indicator / Movement
# dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
# dataframe['minus_di'] = ta.MINUS_DI(dataframe)
2019-11-21 05:40:30 +00:00
# # Aroon, Aroon Oscillator
# aroon = ta.AROON(dataframe)
# dataframe['aroonup'] = aroon['aroonup']
# dataframe['aroondown'] = aroon['aroondown']
# dataframe['aroonosc'] = ta.AROONOSC(dataframe)
2020-02-23 15:22:19 +00:00
# # Awesome Oscillator
2019-11-21 05:40:30 +00:00
# dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
2020-02-23 15:22:19 +00:00
# # Keltner Channel
# keltner = qtpylib.keltner_channel(dataframe)
# dataframe["kc_upperband"] = keltner["upper"]
# dataframe["kc_lowerband"] = keltner["lower"]
# dataframe["kc_middleband"] = keltner["mid"]
# dataframe["kc_percent"] = (
# (dataframe["close"] - dataframe["kc_lowerband"]) /
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
# )
# dataframe["kc_width"] = (
# (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
# )
# # Ultimate Oscillator
# dataframe['uo'] = ta.ULTOSC(dataframe)
# # Commodity Channel Index: values [Oversold:-100, Overbought:100]
2019-11-21 05:40:30 +00:00
# dataframe['cci'] = ta.CCI(dataframe)
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
2019-11-21 05:40:30 +00:00
# rsi = 0.1 * (dataframe['rsi'] - 50)
# dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
2019-11-21 05:40:30 +00:00
# dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
2020-02-23 15:22:19 +00:00
# # Stochastic Slow
2019-11-21 05:40:30 +00:00
# stoch = ta.STOCH(dataframe)
# dataframe['slowd'] = stoch['slowd']
# dataframe['slowk'] = stoch['slowk']
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# Stochastic Fast
2018-01-18 07:06:37 +00:00
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
2020-02-23 15:22:19 +00:00
# # Stochastic RSI
# Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this.
# STOCHRSI is NOT aligned with tradingview, which may result in non-expected results.
2019-11-21 05:40:30 +00:00
# stoch_rsi = ta.STOCHRSI(dataframe)
# dataframe['fastd_rsi'] = stoch_rsi['fastd']
# dataframe['fastk_rsi'] = stoch_rsi['fastk']
2018-01-18 07:06:37 +00:00
2020-02-23 15:22:19 +00:00
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# MFI
dataframe['mfi'] = ta.MFI(dataframe)
# # ROC
# dataframe['roc'] = ta.ROC(dataframe)
2018-01-18 07:06:37 +00:00
# Overlap Studies
# ------------------------------------
2020-02-23 15:22:19 +00:00
# Bollinger Bands
2018-01-18 07:06:37 +00:00
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
2020-02-23 15:22:19 +00:00
dataframe["bb_percent"] = (
(dataframe["close"] - dataframe["bb_lowerband"]) /
(dataframe["bb_upperband"] - dataframe["bb_lowerband"])
)
dataframe["bb_width"] = (
(dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
)
# Bollinger Bands - Weighted (EMA based instead of SMA)
# weighted_bollinger = qtpylib.weighted_bollinger_bands(
# qtpylib.typical_price(dataframe), window=20, stds=2
# )
# dataframe["wbb_upperband"] = weighted_bollinger["upper"]
# dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
# dataframe["wbb_middleband"] = weighted_bollinger["mid"]
# dataframe["wbb_percent"] = (
# (dataframe["close"] - dataframe["wbb_lowerband"]) /
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
# )
# dataframe["wbb_width"] = (
# (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
# dataframe["wbb_middleband"]
# )
2018-01-18 07:06:37 +00:00
2019-11-21 05:40:30 +00:00
# # EMA - Exponential Moving Average
# dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
# dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
# dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
2020-02-23 15:22:19 +00:00
# dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
2019-11-21 05:40:30 +00:00
# dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
# dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
# # SMA - Simple Moving Average
2020-02-23 15:22:19 +00:00
# dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
# dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
# dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
# dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
# dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
# dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)
2019-11-21 05:40:30 +00:00
2020-02-23 15:22:19 +00:00
# Parabolic SAR
dataframe['sar'] = ta.SAR(dataframe)
2018-01-18 07:06:37 +00:00
# TEMA - Triple Exponential Moving Average
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
2018-01-15 08:35:11 +00:00
2018-01-18 07:06:37 +00:00
# Cycle Indicator
# ------------------------------------
# Hilbert Transform Indicator - SineWave
hilbert = ta.HT_SINE(dataframe)
dataframe['htsine'] = hilbert['sine']
dataframe['htleadsine'] = hilbert['leadsine']
2018-01-18 07:06:37 +00:00
# Pattern Recognition - Bullish candlestick patterns
# ------------------------------------
2019-11-21 05:40:30 +00:00
# # Hammer: values [0, 100]
# dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
# # Inverted Hammer: values [0, 100]
# dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
# # Dragonfly Doji: values [0, 100]
# dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
# # Piercing Line: values [0, 100]
# dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
# # Morningstar: values [0, 100]
# dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
# # Three White Soldiers: values [0, 100]
# dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
2018-01-18 07:06:37 +00:00
# Pattern Recognition - Bearish candlestick patterns
# ------------------------------------
2019-11-21 05:40:30 +00:00
# # Hanging Man: values [0, 100]
# dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
# # Shooting Star: values [0, 100]
# dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
# # Gravestone Doji: values [0, 100]
# dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
# # Dark Cloud Cover: values [0, 100]
# dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
# # Evening Doji Star: values [0, 100]
# dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
# # Evening Star: values [0, 100]
# dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
2018-01-18 07:06:37 +00:00
# Pattern Recognition - Bullish/Bearish candlestick patterns
# ------------------------------------
2019-11-21 05:40:30 +00:00
# # Three Line Strike: values [0, -100, 100]
# dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
# # Spinning Top: values [0, -100, 100]
# dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
# # Engulfing: values [0, -100, 100]
# dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
# # Harami: values [0, -100, 100]
# dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
# # Three Outside Up/Down: values [0, -100, 100]
# dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
# # Three Inside Up/Down: values [0, -100, 100]
# dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
# # Chart type
# # ------------------------------------
2020-02-23 15:22:19 +00:00
# # Heikin Ashi Strategy
2019-11-21 05:40:30 +00:00
# heikinashi = qtpylib.heikinashi(dataframe)
# dataframe['ha_open'] = heikinashi['open']
# dataframe['ha_close'] = heikinashi['close']
# dataframe['ha_high'] = heikinashi['high']
# dataframe['ha_low'] = heikinashi['low']
2018-01-18 07:06:37 +00:00
2019-10-15 18:11:41 +00:00
# Retrieve best bid and best ask from the orderbook
# ------------------------------------
"""
2019-08-26 17:44:33 +00:00
# first check if dataprovider is available
2019-06-06 15:25:58 +00:00
if self.dp:
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
"""
2019-08-26 17:44:33 +00:00
2018-01-15 08:35:11 +00:00
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Based on TA indicators, populates the buy signal for the given dataframe
2018-07-18 19:53:03 +00:00
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
2018-01-15 08:35:11 +00:00
:return: DataFrame with buy column
"""
dataframe.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)) &
2019-10-14 18:13:34 +00:00
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
2019-02-17 14:55:47 +00:00
(dataframe['volume'] > 0) # Make sure Volume is not 0
2018-01-15 08:35:11 +00:00
),
2021-09-18 07:23:53 +00:00
'enter_long'] = 1
2018-01-15 08:35:11 +00:00
2021-09-08 06:24:32 +00:00
dataframe.loc[
(
# Signal: RSI crosses above 70
(qtpylib.crossed_above(dataframe['rsi'], self.short_rsi.value)) &
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'enter_short'] = 1
2018-01-15 08:35:11 +00:00
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
2018-01-15 08:35:11 +00:00
"""
Based on TA indicators, populates the sell signal for the given dataframe
2018-07-18 19:53:03 +00:00
:param dataframe: DataFrame populated with indicators
:param metadata: Additional information, like the currently traded pair
:return: DataFrame with sell column
2018-01-15 08:35:11 +00:00
"""
dataframe.loc[
(
# Signal: RSI crosses above 70
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) &
2019-10-15 12:50:51 +00:00
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling
2019-02-17 14:55:47 +00:00
(dataframe['volume'] > 0) # Make sure Volume is not 0
2018-01-15 08:35:11 +00:00
),
2021-09-20 01:06:43 +00:00
2021-09-18 07:23:53 +00:00
'exit_long'] = 1
2021-09-08 06:24:32 +00:00
dataframe.loc[
(
# Signal: RSI crosses above 30
(qtpylib.crossed_above(dataframe['rsi'], self.exit_short_rsi.value)) &
# Guard: tema below BB middle
(dataframe['tema'] <= dataframe['bb_middleband']) &
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'exit_short'] = 1
2018-01-15 08:35:11 +00:00
return dataframe