# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement # flake8: noqa: F401 # isort: skip_file # --- Do not remove these libs --- import numpy as np # noqa import pandas as pd # noqa from pandas import DataFrame from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter, IStrategy, IntParameter) # -------------------------------- # Add your lib to import here import talib.abstract as ta import freqtrade.vendor.qtpylib.indicators as qtpylib # This class is a sample. Feel free to customize it. class SampleStrategy(IStrategy): """ This is a sample strategy to inspire you. More information in https://www.freqtrade.io/en/latest/strategy-customization/ You can: :return: a Dataframe with all mandatory indicators for the strategies - Rename the class name (Do not forget to update class_name) - Add any methods you want to build your strategy - Add any lib you need to build your strategy You must keep: - the lib in the section "Do not remove these libs" - the methods: populate_indicators, populate_buy_trend, populate_sell_trend You should keep: - timeframe, minimal_roi, stoploss, trailing_* """ # Strategy interface version - allow new iterations of the strategy interface. # Check the documentation or the Sample strategy to get the latest version. INTERFACE_VERSION = 2 # Can this strategy go short? can_short: bool = False # Minimal ROI designed for the strategy. # This attribute will be overridden if the config file contains "minimal_roi". minimal_roi = { "60": 0.01, "30": 0.02, "0": 0.04 } # Optimal stoploss designed for the strategy. # This attribute will be overridden if the config file contains "stoploss". stoploss = -0.10 # Trailing stoploss trailing_stop = False # trailing_only_offset_is_reached = False # trailing_stop_positive = 0.01 # trailing_stop_positive_offset = 0.0 # Disabled / not configured # Optimal timeframe for the strategy. timeframe = '5m' # Run "populate_indicators()" only for new candle. process_only_new_candles = False # These values can be overridden in the "ask_strategy" section in the config. use_sell_signal = True sell_profit_only = False ignore_roi_if_buy_signal = False # Hyperoptable parameters buy_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True) sell_rsi = IntParameter(low=50, high=100, default=70, space='sell', optimize=True, load=True) short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True) exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True) # Number of candles the strategy requires before producing valid signals startup_candle_count: int = 30 # Optional order type mapping. order_types = { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'market', 'stoploss_on_exchange': False } # Optional order time in force. order_time_in_force = { 'entry': 'gtc', 'exit': 'gtc' } plot_config = { 'main_plot': { 'tema': {}, 'sar': {'color': 'white'}, }, 'subplots': { "MACD": { 'macd': {'color': 'blue'}, 'macdsignal': {'color': 'orange'}, }, "RSI": { 'rsi': {'color': 'red'}, } } } def informative_pairs(self): """ Define additional, informative pair/interval combinations to be cached from the exchange. These pair/interval combinations are non-tradeable, unless they are part of the whitelist as well. For more information, please consult the documentation :return: List of tuples in the format (pair, interval) Sample: return [("ETH/USDT", "5m"), ("BTC/USDT", "15m"), ] """ return [] def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Adds several different TA indicators to the given DataFrame Performance Note: For the best performance be frugal on the number of indicators you are using. Let uncomment only the indicator you are using in your strategies or your hyperopt configuration, otherwise you will waste your memory and CPU usage. :param dataframe: Dataframe with data from the exchange :param metadata: Additional information, like the currently traded pair :return: a Dataframe with all mandatory indicators for the strategies """ # Momentum Indicators # ------------------------------------ # ADX dataframe['adx'] = ta.ADX(dataframe) # # Plus Directional Indicator / Movement # dataframe['plus_dm'] = ta.PLUS_DM(dataframe) # dataframe['plus_di'] = ta.PLUS_DI(dataframe) # # Minus Directional Indicator / Movement # dataframe['minus_dm'] = ta.MINUS_DM(dataframe) # dataframe['minus_di'] = ta.MINUS_DI(dataframe) # # Aroon, Aroon Oscillator # aroon = ta.AROON(dataframe) # dataframe['aroonup'] = aroon['aroonup'] # dataframe['aroondown'] = aroon['aroondown'] # dataframe['aroonosc'] = ta.AROONOSC(dataframe) # # Awesome Oscillator # dataframe['ao'] = qtpylib.awesome_oscillator(dataframe) # # Keltner Channel # keltner = qtpylib.keltner_channel(dataframe) # dataframe["kc_upperband"] = keltner["upper"] # dataframe["kc_lowerband"] = keltner["lower"] # dataframe["kc_middleband"] = keltner["mid"] # dataframe["kc_percent"] = ( # (dataframe["close"] - dataframe["kc_lowerband"]) / # (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) # ) # dataframe["kc_width"] = ( # (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"] # ) # # Ultimate Oscillator # dataframe['uo'] = ta.ULTOSC(dataframe) # # Commodity Channel Index: values [Oversold:-100, Overbought:100] # dataframe['cci'] = ta.CCI(dataframe) # RSI dataframe['rsi'] = ta.RSI(dataframe) # # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy) # rsi = 0.1 * (dataframe['rsi'] - 50) # dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1) # # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy) # dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1) # # Stochastic Slow # stoch = ta.STOCH(dataframe) # dataframe['slowd'] = stoch['slowd'] # dataframe['slowk'] = stoch['slowk'] # Stochastic Fast stoch_fast = ta.STOCHF(dataframe) dataframe['fastd'] = stoch_fast['fastd'] dataframe['fastk'] = stoch_fast['fastk'] # # Stochastic RSI # Please read https://github.com/freqtrade/freqtrade/issues/2961 before using this. # STOCHRSI is NOT aligned with tradingview, which may result in non-expected results. # stoch_rsi = ta.STOCHRSI(dataframe) # dataframe['fastd_rsi'] = stoch_rsi['fastd'] # dataframe['fastk_rsi'] = stoch_rsi['fastk'] # MACD macd = ta.MACD(dataframe) dataframe['macd'] = macd['macd'] dataframe['macdsignal'] = macd['macdsignal'] dataframe['macdhist'] = macd['macdhist'] # MFI dataframe['mfi'] = ta.MFI(dataframe) # # ROC # dataframe['roc'] = ta.ROC(dataframe) # Overlap Studies # ------------------------------------ # Bollinger Bands bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2) dataframe['bb_lowerband'] = bollinger['lower'] dataframe['bb_middleband'] = bollinger['mid'] dataframe['bb_upperband'] = bollinger['upper'] dataframe["bb_percent"] = ( (dataframe["close"] - dataframe["bb_lowerband"]) / (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) ) dataframe["bb_width"] = ( (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"] ) # Bollinger Bands - Weighted (EMA based instead of SMA) # weighted_bollinger = qtpylib.weighted_bollinger_bands( # qtpylib.typical_price(dataframe), window=20, stds=2 # ) # dataframe["wbb_upperband"] = weighted_bollinger["upper"] # dataframe["wbb_lowerband"] = weighted_bollinger["lower"] # dataframe["wbb_middleband"] = weighted_bollinger["mid"] # dataframe["wbb_percent"] = ( # (dataframe["close"] - dataframe["wbb_lowerband"]) / # (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) # ) # dataframe["wbb_width"] = ( # (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) / # dataframe["wbb_middleband"] # ) # # EMA - Exponential Moving Average # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3) # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5) # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10) # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21) # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50) # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100) # # SMA - Simple Moving Average # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3) # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5) # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10) # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21) # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50) # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100) # Parabolic SAR dataframe['sar'] = ta.SAR(dataframe) # TEMA - Triple Exponential Moving Average dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9) # Cycle Indicator # ------------------------------------ # Hilbert Transform Indicator - SineWave hilbert = ta.HT_SINE(dataframe) dataframe['htsine'] = hilbert['sine'] dataframe['htleadsine'] = hilbert['leadsine'] # Pattern Recognition - Bullish candlestick patterns # ------------------------------------ # # Hammer: values [0, 100] # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe) # # Inverted Hammer: values [0, 100] # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe) # # Dragonfly Doji: values [0, 100] # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe) # # Piercing Line: values [0, 100] # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100] # # Morningstar: values [0, 100] # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100] # # Three White Soldiers: values [0, 100] # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100] # Pattern Recognition - Bearish candlestick patterns # ------------------------------------ # # Hanging Man: values [0, 100] # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe) # # Shooting Star: values [0, 100] # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe) # # Gravestone Doji: values [0, 100] # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe) # # Dark Cloud Cover: values [0, 100] # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe) # # Evening Doji Star: values [0, 100] # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe) # # Evening Star: values [0, 100] # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe) # Pattern Recognition - Bullish/Bearish candlestick patterns # ------------------------------------ # # Three Line Strike: values [0, -100, 100] # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe) # # Spinning Top: values [0, -100, 100] # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100] # # Engulfing: values [0, -100, 100] # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100] # # Harami: values [0, -100, 100] # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100] # # Three Outside Up/Down: values [0, -100, 100] # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100] # # Three Inside Up/Down: values [0, -100, 100] # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100] # # Chart type # # ------------------------------------ # # Heikin Ashi Strategy # heikinashi = qtpylib.heikinashi(dataframe) # dataframe['ha_open'] = heikinashi['open'] # dataframe['ha_close'] = heikinashi['close'] # dataframe['ha_high'] = heikinashi['high'] # dataframe['ha_low'] = heikinashi['low'] # Retrieve best bid and best ask from the orderbook # ------------------------------------ """ # first check if dataprovider is available if self.dp: if self.dp.runmode.value in ('live', 'dry_run'): ob = self.dp.orderbook(metadata['pair'], 1) dataframe['best_bid'] = ob['bids'][0][0] dataframe['best_ask'] = ob['asks'][0][0] """ return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the buy signal for the given dataframe :param dataframe: DataFrame populated with indicators :param metadata: Additional information, like the currently traded pair :return: DataFrame with buy column """ dataframe.loc[ ( # Signal: RSI crosses above 30 (qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)) & (dataframe['tema'] <= dataframe['bb_middleband']) & # Guard: tema below BB middle (dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising (dataframe['volume'] > 0) # Make sure Volume is not 0 ), 'enter_long'] = 1 dataframe.loc[ ( # Signal: RSI crosses above 70 (qtpylib.crossed_above(dataframe['rsi'], self.short_rsi.value)) & (dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle (dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling (dataframe['volume'] > 0) # Make sure Volume is not 0 ), 'enter_short'] = 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: """ Based on TA indicators, populates the sell signal for the given dataframe :param dataframe: DataFrame populated with indicators :param metadata: Additional information, like the currently traded pair :return: DataFrame with sell column """ dataframe.loc[ ( # Signal: RSI crosses above 70 (qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) & (dataframe['tema'] > dataframe['bb_middleband']) & # Guard: tema above BB middle (dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard: tema is falling (dataframe['volume'] > 0) # Make sure Volume is not 0 ), 'exit_long'] = 1 dataframe.loc[ ( # Signal: RSI crosses above 30 (qtpylib.crossed_above(dataframe['rsi'], self.exit_short_rsi.value)) & # Guard: tema below BB middle (dataframe['tema'] <= dataframe['bb_middleband']) & (dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard: tema is raising (dataframe['volume'] > 0) # Make sure Volume is not 0 ), 'exit_short'] = 1 return dataframe