stable/tests/freqai/conftest.py

251 lines
8.9 KiB
Python
Raw Normal View History

2022-07-19 14:16:44 +00:00
from copy import deepcopy
from pathlib import Path
2023-03-21 14:38:05 +00:00
from typing import Any, Dict
2022-08-28 11:47:01 +00:00
from unittest.mock import MagicMock
2022-07-19 14:16:44 +00:00
import pytest
2022-08-28 11:47:01 +00:00
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
2022-07-26 08:51:39 +00:00
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
2022-07-19 14:16:44 +00:00
from freqtrade.resolvers import StrategyResolver
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
from tests.conftest import get_patched_exchange
2022-07-19 14:16:44 +00:00
@pytest.fixture(scope="function")
def freqai_conf(default_conf, tmpdir):
2022-07-19 14:16:44 +00:00
freqaiconf = deepcopy(default_conf)
freqaiconf.update(
{
"datadir": Path(default_conf["datadir"]),
"strategy": "freqai_test_strat",
"user_data_dir": Path(tmpdir),
"strategy-path": "freqtrade/tests/strategy/strats",
"freqaimodel": "LightGBMRegressor",
2022-07-19 14:16:44 +00:00
"freqaimodel_path": "freqai/prediction_models",
"timerange": "20180110-20180115",
"freqai": {
2022-08-13 07:56:21 +00:00
"enabled": True,
"purge_old_models": 2,
2022-09-14 22:46:35 +00:00
"train_period_days": 2,
"backtest_period_days": 10,
2022-07-19 14:16:44 +00:00
"live_retrain_hours": 0,
"expiration_hours": 1,
"identifier": "uniqe-id100",
2022-07-19 14:16:44 +00:00
"live_trained_timestamp": 0,
2022-09-14 22:46:35 +00:00
"data_kitchen_thread_count": 2,
2022-07-19 14:16:44 +00:00
"feature_parameters": {
"include_timeframes": ["5m"],
2022-09-14 22:46:35 +00:00
"include_corr_pairlist": ["ADA/BTC"],
2022-07-19 14:16:44 +00:00
"label_period_candles": 20,
"include_shifted_candles": 1,
2022-07-19 14:16:44 +00:00
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": False,
"use_SVM_to_remove_outliers": True,
"stratify_training_data": 0,
"indicator_periods_candles": [10],
"shuffle_after_split": False,
"buffer_train_data_candles": 0
2022-07-19 14:16:44 +00:00
},
2022-09-14 22:46:35 +00:00
"data_split_parameters": {"test_size": 0.33, "shuffle": False},
"model_training_parameters": {"n_estimators": 100},
2022-07-19 14:16:44 +00:00
},
"config_files": [Path('config_examples', 'config_freqai.example.json')]
2022-07-19 14:16:44 +00:00
}
)
freqaiconf['exchange'].update({'pair_whitelist': ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
return freqaiconf
def make_rl_config(conf):
conf.update({"strategy": "freqai_rl_test_strat"})
conf["freqai"].update({"model_training_parameters": {
"learning_rate": 0.00025,
"gamma": 0.9,
"verbose": 1
}})
conf["freqai"]["rl_config"] = {
"train_cycles": 1,
"thread_count": 2,
"max_trade_duration_candles": 300,
"model_type": "PPO",
"policy_type": "MlpPolicy",
"max_training_drawdown_pct": 0.5,
"net_arch": [32, 32],
"model_reward_parameters": {
"rr": 1,
"profit_aim": 0.02,
"win_reward_factor": 2
},
"drop_ohlc_from_features": False
}
return conf
2023-03-21 14:38:05 +00:00
def mock_pytorch_mlp_model_training_parameters() -> Dict[str, Any]:
return {
"learning_rate": 3e-4,
"trainer_kwargs": {
"max_iters": 1,
"batch_size": 64,
"max_n_eval_batches": 1,
},
"model_kwargs": {
"hidden_dim": 32,
"dropout_percent": 0.2,
"n_layer": 1,
}
}
2022-07-19 14:16:44 +00:00
def get_patched_data_kitchen(mocker, freqaiconf):
dk = FreqaiDataKitchen(freqaiconf)
2022-07-19 14:16:44 +00:00
return dk
def get_patched_data_drawer(mocker, freqaiconf):
# dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock())
dd = FreqaiDataDrawer(freqaiconf)
return dd
def get_patched_freqai_strategy(mocker, freqaiconf):
2022-07-19 14:16:44 +00:00
strategy = StrategyResolver.load_strategy(freqaiconf)
2022-07-23 14:05:25 +00:00
strategy.ft_bot_start()
2022-07-19 14:16:44 +00:00
return strategy
def get_patched_freqaimodel(mocker, freqaiconf):
freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf)
return freqaimodel
def make_unfiltered_dataframe(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
2023-03-26 17:22:52 +00:00
freqai.dk.live = True
freqai.dk.pair = "ADA/BTC"
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(data_load_timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
2022-09-06 17:56:52 +00:00
new_timerange = TimeRange.parse_timerange("20180120-20180130")
corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes(
data_load_timerange, freqai.dk.pair, freqai.dk
)
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
)
2022-10-06 17:26:33 +00:00
for i in range(5):
unfiltered_dataframe[f'constant_{i}'] = i
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
return freqai, unfiltered_dataframe
def make_data_dictionary(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
2023-03-26 17:22:52 +00:00
freqai.dk.live = True
freqai.dk.pair = "ADA/BTC"
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(data_load_timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
new_timerange = TimeRange.parse_timerange("20180120-20180130")
corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes(
data_load_timerange, freqai.dk.pair, freqai.dk
)
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
)
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
freqai.dk.find_features(unfiltered_dataframe)
features_filtered, labels_filtered = freqai.dk.filter_features(
unfiltered_dataframe,
freqai.dk.training_features_list,
freqai.dk.label_list,
training_filter=True,
)
data_dictionary = freqai.dk.make_train_test_datasets(features_filtered, labels_filtered)
data_dictionary = freqai.dk.normalize_data(data_dictionary)
return freqai
def get_freqai_live_analyzed_dataframe(mocker, freqaiconf):
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
strategy.analyze_pair('ADA/BTC', '5m')
return strategy.dp.get_analyzed_dataframe('ADA/BTC', '5m')
def get_freqai_analyzed_dataframe(mocker, freqaiconf):
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
strategy.freqai_info = freqaiconf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC")
return freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, 'LTC/BTC')
def get_ready_to_train(mocker, freqaiconf):
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
strategy.freqai_info = freqaiconf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC")
return corr_df, base_df, freqai, strategy