stable/freqtrade/freqai/RL/Base3ActionRLEnv.py

333 lines
12 KiB
Python
Raw Normal View History

# Example of a 3 action environment.
# import logging
# from enum import Enum
# import gym
# import numpy as np
# import pandas as pd
# from gym import spaces
# from gym.utils import seeding
# from pandas import DataFrame
# # from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
# logger = logging.getLogger(__name__)
# class Actions(Enum):
# Short = 0
# Long = 1
# Neutral = 2
# class Positions(Enum):
# Short = 0
# Long = 1
# Neutral = 0.5
# def opposite(self):
# return Positions.Short if self == Positions.Long else Positions.Long
# def mean_over_std(x):
# std = np.std(x, ddof=1)
# mean = np.mean(x)
# return mean / std if std > 0 else 0
# class Base3ActionRLEnv(gym.Env):
# metadata = {'render.modes': ['human']}
# def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
# reward_kwargs: dict = {}, window_size=10, starting_point=True,
# id: str = 'baseenv-1', seed: int = 1):
# assert df.ndim == 2
# self.id = id
# self.seed(seed)
# self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
# def reset_env(self, df, prices, window_size, reward_kwargs, starting_point=True):
# self.df = df
# self.signal_features = self.df
# self.prices = prices
# self.window_size = window_size
# self.starting_point = starting_point
# self.rr = reward_kwargs["rr"]
# self.profit_aim = reward_kwargs["profit_aim"]
# self.fee = 0.0015
# # # spaces
# self.shape = (window_size, self.signal_features.shape[1] + 2)
# self.action_space = spaces.Discrete(len(Actions))
# self.observation_space = spaces.Box(
# low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
# # episode
# self._start_tick = self.window_size
# self._end_tick = len(self.prices) - 1
# self._done = None
# self._current_tick = None
# self._last_trade_tick = None
# self._position = Positions.Neutral
# self._position_history = None
# self.total_reward = None
# self._total_profit = None
# self._first_rendering = None
# self.history = None
# self.trade_history = []
# def seed(self, seed: int = 1):
# self.np_random, seed = seeding.np_random(seed)
# return [seed]
# def reset(self):
# self._done = False
# if self.starting_point is True:
# self._position_history = (self._start_tick * [None]) + [self._position]
# else:
# self._position_history = (self.window_size * [None]) + [self._position]
# self._current_tick = self._start_tick
# self._last_trade_tick = None
# self._position = Positions.Neutral
# self.total_reward = 0.
# self._total_profit = 1. # unit
# self._first_rendering = True
# self.history = {}
# self.trade_history = []
# self.portfolio_log_returns = np.zeros(len(self.prices))
# self._profits = [(self._start_tick, 1)]
# self.close_trade_profit = []
# return self._get_observation()
# def step(self, action: int):
# self._done = False
# self._current_tick += 1
# if self._current_tick == self._end_tick:
# self._done = True
# self.update_portfolio_log_returns(action)
# self._update_profit(action)
# step_reward = self.calculate_reward(action)
# self.total_reward += step_reward
# trade_type = None
# if self.is_tradesignal(action): # exclude 3 case not trade
# # Update position
# """
# Action: Neutral, position: Long -> Close Long
# Action: Neutral, position: Short -> Close Short
# Action: Long, position: Neutral -> Open Long
# Action: Long, position: Short -> Close Short and Open Long
# Action: Short, position: Neutral -> Open Short
# Action: Short, position: Long -> Close Long and Open Short
# """
# if action == Actions.Neutral.value:
# self._position = Positions.Neutral
# trade_type = "neutral"
# elif action == Actions.Long.value:
# self._position = Positions.Long
# trade_type = "long"
# elif action == Actions.Short.value:
# self._position = Positions.Short
# trade_type = "short"
# else:
# print("case not defined")
# # Update last trade tick
# self._last_trade_tick = self._current_tick
# if trade_type is not None:
# self.trade_history.append(
# {'price': self.current_price(), 'index': self._current_tick,
# 'type': trade_type})
# if self._total_profit < 0.2:
# self._done = True
# self._position_history.append(self._position)
# observation = self._get_observation()
# info = dict(
# tick=self._current_tick,
# total_reward=self.total_reward,
# total_profit=self._total_profit,
# position=self._position.value
# )
# self._update_history(info)
# return observation, step_reward, self._done, info
# def _get_observation(self):
# features_window = self.signal_features[(
# self._current_tick - self.window_size):self._current_tick]
# features_and_state = DataFrame(np.zeros((len(features_window), 2)),
# columns=['current_profit_pct', 'position'],
# index=features_window.index)
# features_and_state['current_profit_pct'] = self.get_unrealized_profit()
# features_and_state['position'] = self._position.value
# features_and_state = pd.concat([features_window, features_and_state], axis=1)
# return features_and_state
# def get_unrealized_profit(self):
# if self._last_trade_tick is None:
# return 0.
# if self._position == Positions.Neutral:
# return 0.
# elif self._position == Positions.Short:
# current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
# last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
# return (last_trade_price - current_price) / last_trade_price
# elif self._position == Positions.Long:
# current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
# last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
# return (current_price - last_trade_price) / last_trade_price
# else:
# return 0.
# def is_tradesignal(self, action: int):
# # trade signal
# """
# not trade signal is :
# Action: Neutral, position: Neutral -> Nothing
# Action: Long, position: Long -> Hold Long
# Action: Short, position: Short -> Hold Short
# """
# return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
# or (action == Actions.Short.value and self._position == Positions.Short)
# or (action == Actions.Long.value and self._position == Positions.Long))
# def _is_trade(self, action: Actions):
# return ((action == Actions.Long.value and self._position == Positions.Short) or
# (action == Actions.Short.value and self._position == Positions.Long) or
# (action == Actions.Neutral.value and self._position == Positions.Long) or
# (action == Actions.Neutral.value and self._position == Positions.Short)
# )
# def is_hold(self, action):
# return ((action == Actions.Short.value and self._position == Positions.Short)
# or (action == Actions.Long.value and self._position == Positions.Long))
# def add_buy_fee(self, price):
# return price * (1 + self.fee)
# def add_sell_fee(self, price):
# return price / (1 + self.fee)
# def _update_history(self, info):
# if not self.history:
# self.history = {key: [] for key in info.keys()}
# for key, value in info.items():
# self.history[key].append(value)
# def get_sharpe_ratio(self):
# return mean_over_std(self.get_portfolio_log_returns())
# def calculate_reward(self, action):
# if self._last_trade_tick is None:
# return 0.
# # close long
# if (action == Actions.Short.value or
# action == Actions.Neutral.value) and self._position == Positions.Long:
# last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
# current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
# return float(np.log(current_price) - np.log(last_trade_price))
# # close short
# if (action == Actions.Long.value or
# action == Actions.Neutral.value) and self._position == Positions.Short:
# last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
# current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
# return float(np.log(last_trade_price) - np.log(current_price))
# return 0.
# def _update_profit(self, action):
# if self._is_trade(action) or self._done:
# pnl = self.get_unrealized_profit()
# if self._position == Positions.Long:
# self._total_profit = self._total_profit + self._total_profit * pnl
# self._profits.append((self._current_tick, self._total_profit))
# self.close_trade_profit.append(pnl)
# if self._position == Positions.Short:
# self._total_profit = self._total_profit + self._total_profit * pnl
# self._profits.append((self._current_tick, self._total_profit))
# self.close_trade_profit.append(pnl)
# def most_recent_return(self, action: int):
# """
# We support Long, Neutral and Short positions.
# Return is generated from rising prices in Long
# and falling prices in Short positions.
# The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
# """
# # Long positions
# if self._position == Positions.Long:
# current_price = self.prices.iloc[self._current_tick].open
# if action == Actions.Short.value or action == Actions.Neutral.value:
# current_price = self.add_sell_fee(current_price)
# previous_price = self.prices.iloc[self._current_tick - 1].open
# if (self._position_history[self._current_tick - 1] == Positions.Short
# or self._position_history[self._current_tick - 1] == Positions.Neutral):
# previous_price = self.add_buy_fee(previous_price)
# return np.log(current_price) - np.log(previous_price)
# # Short positions
# if self._position == Positions.Short:
# current_price = self.prices.iloc[self._current_tick].open
# if action == Actions.Long.value or action == Actions.Neutral.value:
# current_price = self.add_buy_fee(current_price)
# previous_price = self.prices.iloc[self._current_tick - 1].open
# if (self._position_history[self._current_tick - 1] == Positions.Long
# or self._position_history[self._current_tick - 1] == Positions.Neutral):
# previous_price = self.add_sell_fee(previous_price)
# return np.log(previous_price) - np.log(current_price)
# return 0
# def get_portfolio_log_returns(self):
# return self.portfolio_log_returns[1:self._current_tick + 1]
# def update_portfolio_log_returns(self, action):
# self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
# def current_price(self) -> float:
# return self.prices.iloc[self._current_tick].open
# def prev_price(self) -> float:
# return self.prices.iloc[self._current_tick - 1].open
# def sharpe_ratio(self) -> float:
# if len(self.close_trade_profit) == 0:
# return 0.
# returns = np.array(self.close_trade_profit)
# reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
# return reward