2022-07-02 16:09:38 +00:00
|
|
|
import logging
|
2022-07-11 09:33:59 +00:00
|
|
|
from typing import Any, Dict
|
2022-07-02 16:09:38 +00:00
|
|
|
|
|
|
|
from catboost import CatBoostRegressor # , Pool
|
|
|
|
from sklearn.multioutput import MultiOutputRegressor
|
|
|
|
|
2022-07-11 09:33:59 +00:00
|
|
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
2022-07-02 16:09:38 +00:00
|
|
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2022-07-11 09:33:59 +00:00
|
|
|
class CatboostPredictionMultiModel(BaseRegressionModel):
|
2022-07-02 16:09:38 +00:00
|
|
|
"""
|
|
|
|
User created prediction model. The class needs to override three necessary
|
|
|
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
|
|
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def fit(self, data_dictionary: Dict) -> Any:
|
|
|
|
"""
|
|
|
|
User sets up the training and test data to fit their desired model here
|
|
|
|
:params:
|
|
|
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
|
|
|
all the training and test data/labels.
|
|
|
|
"""
|
|
|
|
|
|
|
|
cbr = CatBoostRegressor(
|
2022-07-03 08:59:38 +00:00
|
|
|
allow_writing_files=False,
|
|
|
|
**self.model_training_parameters,
|
2022-07-02 16:09:38 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
X = data_dictionary["train_features"]
|
|
|
|
y = data_dictionary["train_labels"]
|
2022-07-18 09:57:52 +00:00
|
|
|
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
2022-07-03 08:59:38 +00:00
|
|
|
sample_weight = data_dictionary["train_weights"]
|
2022-07-02 16:09:38 +00:00
|
|
|
|
|
|
|
model = MultiOutputRegressor(estimator=cbr)
|
|
|
|
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
2022-07-18 09:57:52 +00:00
|
|
|
train_score = model.score(X, y)
|
|
|
|
test_score = model.score(*eval_set)
|
|
|
|
logger.info(f"Train score {train_score}, Test score {test_score}")
|
2022-07-02 16:09:38 +00:00
|
|
|
return model
|