stable/freqtrade/data/btanalysis.py

121 lines
4.5 KiB
Python
Raw Normal View History

2019-03-07 20:20:32 +00:00
"""
Helpers when analyzing backtest data
"""
2019-06-16 08:41:05 +00:00
import logging
2019-03-07 20:20:32 +00:00
from pathlib import Path
import numpy as np
import pandas as pd
2019-06-16 08:41:05 +00:00
import pytz
2019-03-07 20:20:32 +00:00
2019-06-16 08:41:05 +00:00
from freqtrade import persistence
2019-03-07 20:20:32 +00:00
from freqtrade.misc import json_load
2019-06-16 08:41:05 +00:00
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
2019-03-07 20:20:32 +00:00
# must align with columns in backtest.py
BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "duration",
"open_rate", "close_rate", "open_at_end", "sell_reason"]
2019-03-07 20:20:32 +00:00
def load_backtest_data(filename) -> pd.DataFrame:
"""
Load backtest data file.
:param filename: pathlib.Path object, or string pointing to the file.
:return a dataframe with the analysis results
"""
if isinstance(filename, str):
filename = Path(filename)
if not filename.is_file():
raise ValueError("File {filename} does not exist.")
with filename.open() as file:
data = json_load(file)
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
2019-03-07 20:20:32 +00:00
df['open_time'] = pd.to_datetime(df['open_time'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['close_time'] = pd.to_datetime(df['close_time'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['profitabs'] = df['close_rate'] - df['open_rate']
df = df.sort_values("open_time").reset_index(drop=True)
return df
def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
:param results: Results Dataframe - can be loaded
:param freq: Frequency used for the backtest
:param max_open_trades: parameter max_open_trades used during backtest run
:return: dataframe with open-counts per time-period in freq
"""
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time, freq=freq))
for row in results[['open_time', 'close_time']].iterrows()]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date')
df2 = pd.DataFrame(np.repeat(results.values, deltas, axis=0), columns=results.columns)
df2 = df2.astype(dtype={"open_time": "datetime64", "close_time": "datetime64"})
df2 = pd.concat([dates, df2], axis=1)
df2 = df2.set_index('date')
df_final = df2.resample(freq)[['pair']].count()
return df_final[df_final['pair'] > max_open_trades]
2019-06-16 08:41:05 +00:00
def load_trades(db_url: str = None, exportfilename: str = None) -> pd.DataFrame:
"""
Load trades, either from a DB (using dburl) or via a backtest export file.
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
:param exportfilename: Path to a file exported from backtesting
:returns: Dataframe containing Trades
"""
timeZone = pytz.UTC
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
if db_url:
persistence.init(db_url, clean_open_orders=False)
columns = ["pair", "profit", "open_time", "close_time",
"open_rate", "close_rate", "duration"]
for x in Trade.query.all():
logger.info("date: {}".format(x.open_date))
trades = pd.DataFrame([(t.pair, t.calc_profit(),
t.open_date.replace(tzinfo=timeZone),
t.close_date.replace(tzinfo=timeZone) if t.close_date else None,
t.open_rate, t.close_rate,
t.close_date.timestamp() - t.open_date.timestamp()
if t.close_date else None)
for t in Trade.query.all()],
columns=columns)
elif exportfilename:
file = Path(exportfilename)
if file.exists():
trades = load_backtest_data(file)
return trades
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame:
"""
Compare trades and backtested pair DataFrames to get trades performed on backtested period
:return: the DataFrame of a trades of period
"""
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
return trades