""" Helpers when analyzing backtest data """ import logging from pathlib import Path import numpy as np import pandas as pd import pytz from freqtrade import persistence from freqtrade.misc import json_load from freqtrade.persistence import Trade logger = logging.getLogger(__name__) # must align with columns in backtest.py BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "duration", "open_rate", "close_rate", "open_at_end", "sell_reason"] def load_backtest_data(filename) -> pd.DataFrame: """ Load backtest data file. :param filename: pathlib.Path object, or string pointing to the file. :return a dataframe with the analysis results """ if isinstance(filename, str): filename = Path(filename) if not filename.is_file(): raise ValueError("File {filename} does not exist.") with filename.open() as file: data = json_load(file) df = pd.DataFrame(data, columns=BT_DATA_COLUMNS) df['open_time'] = pd.to_datetime(df['open_time'], unit='s', utc=True, infer_datetime_format=True ) df['close_time'] = pd.to_datetime(df['close_time'], unit='s', utc=True, infer_datetime_format=True ) df['profitabs'] = df['close_rate'] - df['open_rate'] df = df.sort_values("open_time").reset_index(drop=True) return df def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int) -> pd.DataFrame: """ Find overlapping trades by expanding each trade once per period it was open and then counting overlaps :param results: Results Dataframe - can be loaded :param freq: Frequency used for the backtest :param max_open_trades: parameter max_open_trades used during backtest run :return: dataframe with open-counts per time-period in freq """ dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time, freq=freq)) for row in results[['open_time', 'close_time']].iterrows()] deltas = [len(x) for x in dates] dates = pd.Series(pd.concat(dates).values, name='date') df2 = pd.DataFrame(np.repeat(results.values, deltas, axis=0), columns=results.columns) df2 = df2.astype(dtype={"open_time": "datetime64", "close_time": "datetime64"}) df2 = pd.concat([dates, df2], axis=1) df2 = df2.set_index('date') df_final = df2.resample(freq)[['pair']].count() return df_final[df_final['pair'] > max_open_trades] def load_trades(db_url: str = None, exportfilename: str = None) -> pd.DataFrame: """ Load trades, either from a DB (using dburl) or via a backtest export file. :param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite) :param exportfilename: Path to a file exported from backtesting :returns: Dataframe containing Trades """ timeZone = pytz.UTC trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS) if db_url: persistence.init(db_url, clean_open_orders=False) columns = ["pair", "profit", "open_time", "close_time", "open_rate", "close_rate", "duration"] for x in Trade.query.all(): logger.info("date: {}".format(x.open_date)) trades = pd.DataFrame([(t.pair, t.calc_profit(), t.open_date.replace(tzinfo=timeZone), t.close_date.replace(tzinfo=timeZone) if t.close_date else None, t.open_rate, t.close_rate, t.close_date.timestamp() - t.open_date.timestamp() if t.close_date else None) for t in Trade.query.all()], columns=columns) elif exportfilename: file = Path(exportfilename) if file.exists(): trades = load_backtest_data(file) return trades def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame: """ Compare trades and backtested pair DataFrames to get trades performed on backtested period :return: the DataFrame of a trades of period """ trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) & (trades['close_time'] <= dataframe.iloc[-1]['date'])] return trades