2019-07-16 04:45:13 +00:00
|
|
|
"""
|
2019-07-23 15:51:24 +00:00
|
|
|
SharpeHyperOptLoss
|
2019-07-16 04:45:13 +00:00
|
|
|
|
2019-07-23 15:51:24 +00:00
|
|
|
This module defines the alternative HyperOptLoss class which can be used for
|
|
|
|
Hyperoptimization.
|
|
|
|
"""
|
2019-07-16 04:45:13 +00:00
|
|
|
from datetime import datetime
|
|
|
|
|
2020-09-28 17:39:41 +00:00
|
|
|
from pandas import DataFrame
|
2019-07-16 04:45:13 +00:00
|
|
|
|
2023-01-07 00:14:56 +00:00
|
|
|
from freqtrade.constants import Config
|
|
|
|
from freqtrade.data.metrics import calculate_sharpe
|
2023-01-07 00:50:05 +00:00
|
|
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
2019-07-16 04:45:13 +00:00
|
|
|
|
2023-01-07 00:46:46 +00:00
|
|
|
|
2019-07-16 04:45:13 +00:00
|
|
|
class SharpeHyperOptLoss(IHyperOptLoss):
|
|
|
|
"""
|
2019-07-23 15:51:24 +00:00
|
|
|
Defines the loss function for hyperopt.
|
|
|
|
|
|
|
|
This implementation uses the Sharpe Ratio calculation.
|
2019-07-16 04:45:13 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
|
|
|
min_date: datetime, max_date: datetime,
|
2023-01-06 23:56:40 +00:00
|
|
|
config: Config, *args, **kwargs) -> float:
|
2019-07-16 04:45:13 +00:00
|
|
|
"""
|
2019-07-23 15:51:24 +00:00
|
|
|
Objective function, returns smaller number for more optimal results.
|
|
|
|
|
|
|
|
Uses Sharpe Ratio calculation.
|
2019-07-16 04:45:13 +00:00
|
|
|
"""
|
2023-01-06 23:56:40 +00:00
|
|
|
starting_balance = config['dry_run_wallet']
|
|
|
|
sharp_ratio = calculate_sharpe(results, min_date, max_date, starting_balance)
|
2020-02-02 07:47:33 +00:00
|
|
|
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
2019-07-16 04:45:13 +00:00
|
|
|
return -sharp_ratio
|