* See [jupyter.org](https://jupyter.org/documentation) for usage instructions.
* Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*
* Copy the example notebook so your changes don't get clobbered with the next freqtrade update.
## Fine print
Some tasks don't work especially well in notebooks. For example, anything using asyncronous exectution is a problem for Jupyter. Also, freqtrade's primary entry point is the shell cli, so using pure python in a notebook bypasses arguments that provide required parameters to functions.
## Recommended workflow
| Task | Tool |
--- | ---
Bot operations | CLI
Repetative tasks | shell scripts
Data analysis & visualization | Notebook
1. Use the CLI to
* download historical data
* run a backtest
* run with real-time data
* export results
1. Collect these actions in shell scripts
* save complicated commands with arguments
* execute mult-step operations
* automate testing strategies and prepareing data for analysis
1. Use a notebook to
* import data
* munge and plot to generate insights
## Example utility snippets for Jupyter notebooks
### Change directory to root
Jupyter notebooks execute from the notebook directory. The following snippet searches for the project root, so relative paths remain consistant.
```python
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
import os
from pathlib import Path
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4and(notPath('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
print(Path.cwd())
```
### Watch project for changes to code
This scans the project for changes to code before Jupyter runs cells.
```python
# Reloads local code changes
%load_ext autoreload
%autoreload 2
```
## Load existing objects into a Jupyter notebook
These examples assume that you have already generated data using the cli. These examples will allow you to drill deeper into your results, and perform analysis which otherwise would make the output very difficult to digest due to information overload.
* Columns with NaN values at the end of the dataframe
* Columns used in `crossed*()` functions with completely different units
* Comparison with full backtest
* having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
* Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29). The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.