stable/freqtrade/freqai/data_drawer.py

361 lines
14 KiB
Python
Raw Normal View History

import collections
import json
import logging
import pickle
import re
import shutil
2022-06-06 23:07:30 +00:00
import threading
from pathlib import Path
from typing import Any, Dict, Tuple
import numpy as np
import pandas as pd
from pandas import DataFrame
# from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class FreqaiDataDrawer:
"""
Class aimed at holding all pair models/info in memory for better inferencing/retrainig/saving
/loading to/from disk.
This object remains persistent throughout live/dry, unlike FreqaiDataKitchen, which is
reinstantiated for each coin.
"""
2022-07-03 08:59:38 +00:00
def __init__(self, full_path: Path, config: dict, follow_mode: bool = False):
self.config = config
2022-07-03 08:59:38 +00:00
self.freqai_info = config.get("freqai", {})
# dictionary holding all pair metadata necessary to load in from disk
self.pair_dict: Dict[str, Any] = {}
# dictionary holding all actively inferenced models in memory given a model filename
self.model_dictionary: Dict[str, Any] = {}
self.model_return_values: Dict[str, Any] = {}
self.pair_data_dict: Dict[str, Any] = {}
self.historic_data: Dict[str, Any] = {}
self.historic_predictions: Dict[str, Any] = {}
self.follower_dict: Dict[str, Any] = {}
self.full_path = full_path
self.follow_mode = follow_mode
if follow_mode:
self.create_follower_dict()
self.load_drawer_from_disk()
self.load_historic_predictions_from_disk()
self.training_queue: Dict[str, int] = {}
2022-06-06 23:07:30 +00:00
self.history_lock = threading.Lock()
def load_drawer_from_disk(self):
"""
Locate and load a previously saved data drawer full of all pair model metadata in
present model folder.
:returns:
exists: bool = whether or not the drawer was located
"""
2022-07-03 08:59:38 +00:00
exists = Path(self.full_path / str("pair_dictionary.json")).resolve().exists()
if exists:
2022-07-03 08:59:38 +00:00
with open(self.full_path / str("pair_dictionary.json"), "r") as fp:
self.pair_dict = json.load(fp)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
2022-07-03 08:59:38 +00:00
logger.warning(
f"Follower could not find pair_dictionary at {self.full_path} "
"sending null values back to strategy"
)
return exists
def load_historic_predictions_from_disk(self):
"""
Locate and load a previously saved historic predictions.
:returns:
exists: bool = whether or not the drawer was located
"""
exists = Path(self.full_path / str("historic_predictions.pkl")).resolve().exists()
if exists:
with open(self.full_path / str("historic_predictions.pkl"), "rb") as fp:
self.historic_predictions = pickle.load(fp)
2022-07-17 08:05:21 +00:00
logger.info(f"Found existing historic predictions at {self.full_path}, but beware "
"that statistics may be inaccurate if the bot has been offline for "
"an extended period of time.")
elif not self.follow_mode:
logger.info("Could not find existing historic_predictions, starting from scratch")
else:
logger.warning(
f"Follower could not find historic predictions at {self.full_path} "
"sending null values back to strategy"
)
return exists
2022-07-16 19:16:59 +00:00
def save_historic_predictions_to_disk(self):
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with open(self.full_path / str("historic_predictions.pkl"), "wb") as fp:
pickle.dump(self.historic_predictions, fp, protocol=pickle.HIGHEST_PROTOCOL)
2022-07-16 19:16:59 +00:00
def save_drawer_to_disk(self):
"""
Save data drawer full of all pair model metadata in present model folder.
"""
with open(self.full_path / str("pair_dictionary.json"), "w") as fp:
json.dump(self.pair_dict, fp, default=self.np_encoder)
def save_follower_dict_to_disk(self):
"""
Save follower dictionary to disk (used by strategy for persistent prediction targets)
"""
2022-07-03 08:59:38 +00:00
follower_name = self.config.get("bot_name", "follower1")
with open(
self.full_path / str("follower_dictionary-" + follower_name + ".json"), "w"
) as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
"""
2022-07-03 08:59:38 +00:00
follower_name = self.config.get("bot_name", "follower1")
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
2022-07-03 08:59:38 +00:00
exists = (
Path(self.full_path / str("follower_dictionary-" + follower_name + ".json"))
.resolve()
.exists()
)
if exists:
2022-07-03 08:59:38 +00:00
logger.info("Found an existing follower dictionary")
for pair in whitelist_pairs:
self.follower_dict[pair] = {}
2022-07-03 08:59:38 +00:00
with open(
self.full_path / str("follower_dictionary-" + follower_name + ".json"), "w"
) as fp:
json.dump(self.follower_dict, fp, default=self.np_encoder)
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()
2022-06-15 22:21:15 +00:00
def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool, bool]:
"""
Locate and load existing model metadata from persistent storage. If not located,
create a new one and append the current pair to it and prepare it for its first
training
:params:
metadata: dict = strategy furnished pair metadata
:returns:
model_filename: str = unique filename used for loading persistent objects from disk
trained_timestamp: int = the last time the coin was trained
coin_first: bool = If the coin is fresh without metadata
return_null_array: bool = Follower could not find pair metadata
"""
2022-06-15 22:21:15 +00:00
pair_in_dict = self.pair_dict.get(pair)
2022-07-03 08:59:38 +00:00
data_path_set = self.pair_dict.get(pair, {}).get("data_path", None)
return_null_array = False
if pair_in_dict:
2022-07-03 08:59:38 +00:00
model_filename = self.pair_dict[pair]["model_filename"]
trained_timestamp = self.pair_dict[pair]["trained_timestamp"]
coin_first = self.pair_dict[pair]["first"]
elif not self.follow_mode:
2022-06-15 22:21:15 +00:00
self.pair_dict[pair] = {}
2022-07-03 08:59:38 +00:00
model_filename = self.pair_dict[pair]["model_filename"] = ""
coin_first = self.pair_dict[pair]["first"] = True
trained_timestamp = self.pair_dict[pair]["trained_timestamp"] = 0
self.pair_dict[pair]["priority"] = len(self.pair_dict)
if not data_path_set and self.follow_mode:
2022-07-03 08:59:38 +00:00
logger.warning(
f"Follower could not find current pair {pair} in "
f"pair_dictionary at path {self.full_path}, sending null values "
"back to strategy."
)
return_null_array = True
return model_filename, trained_timestamp, coin_first, return_null_array
def set_pair_dict_info(self, metadata: dict) -> None:
2022-07-03 08:59:38 +00:00
pair_in_dict = self.pair_dict.get(metadata["pair"])
if pair_in_dict:
return
else:
2022-07-03 08:59:38 +00:00
self.pair_dict[metadata["pair"]] = {}
self.pair_dict[metadata["pair"]]["model_filename"] = ""
self.pair_dict[metadata["pair"]]["first"] = True
self.pair_dict[metadata["pair"]]["trained_timestamp"] = 0
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
return
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
for p in self.pair_dict:
2022-07-03 08:59:38 +00:00
self.pair_dict[p]["priority"] -= 1
# send pair to end of queue
2022-07-03 08:59:38 +00:00
self.pair_dict[pair]["priority"] = len(self.pair_dict)
2022-07-02 16:09:38 +00:00
def set_initial_return_values(self, pair: str, dk, pred_df, do_preds) -> None:
"""
Set the initial return values to a persistent dataframe. This avoids needing to repredict on
historical candles, and also stores historical predictions despite retrainings (so stored
predictions are true predictions, not just inferencing on trained data)
"""
# dynamic df returned to strategy and plotted in frequi
mrv_df = self.model_return_values[pair] = pd.DataFrame()
2022-07-02 16:09:38 +00:00
for label in dk.label_list:
mrv_df[label] = pred_df[label]
mrv_df[f"{label}_mean"] = dk.data["labels_mean"][label]
mrv_df[f"{label}_std"] = dk.data["labels_std"][label]
2022-05-30 10:48:22 +00:00
2022-07-03 08:59:38 +00:00
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
mrv_df["DI_values"] = dk.DI_values
2022-07-02 16:09:38 +00:00
mrv_df["do_predict"] = do_preds
2022-07-03 08:59:38 +00:00
def append_model_predictions(self, pair: str, predictions, do_preds, dk, len_df) -> None:
# strat seems to feed us variable sized dataframes - and since we are trying to build our
# own return array in the same shape, we need to figure out how the size has changed
# and adapt our stored/returned info accordingly.
2022-07-02 16:09:38 +00:00
length_difference = len(self.model_return_values[pair]) - len_df
i = 0
if length_difference == 0:
i = 1
elif length_difference > 0:
i = length_difference + 1
2022-07-02 16:09:38 +00:00
df = self.model_return_values[pair] = self.model_return_values[pair].shift(-i)
if pair in self.historic_predictions:
hp_df = self.historic_predictions[pair]
# here are some pandas hula hoops to accommodate the possibility of a series
# or dataframe depending number of labels requested by user
nan_df = pd.DataFrame(np.nan, index=hp_df.index[-2:] + 2, columns=hp_df.columns)
hp_df = pd.concat([hp_df, nan_df], ignore_index=True, axis=0)
self.historic_predictions[pair] = hp_df[:-1]
2022-07-02 16:09:38 +00:00
for label in dk.label_list:
df[label].iloc[-1] = predictions[label].iloc[-1]
2022-07-03 08:59:38 +00:00
df[f"{label}_mean"].iloc[-1] = dk.data["labels_mean"][label]
df[f"{label}_std"].iloc[-1] = dk.data["labels_std"][label]
2022-07-02 16:09:38 +00:00
# df['prediction'].iloc[-1] = predictions[-1]
2022-07-03 08:59:38 +00:00
df["do_predict"].iloc[-1] = do_preds[-1]
2022-07-02 16:09:38 +00:00
2022-07-03 08:59:38 +00:00
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
df["DI_values"].iloc[-1] = dk.DI_values[-1]
# append the new predictions to persistent storage
if pair in self.historic_predictions:
self.historic_predictions[pair].iloc[-1] = df[label].iloc[-1]
if length_difference < 0:
2022-07-03 08:59:38 +00:00
prepend_df = pd.DataFrame(
np.zeros((abs(length_difference) - 1, len(df.columns))), columns=df.columns
)
df = pd.concat([prepend_df, df], axis=0)
2022-07-02 16:09:38 +00:00
def attach_return_values_to_return_dataframe(self, pair: str, dataframe) -> DataFrame:
"""
Attach the return values to the strat dataframe
:params:
dataframe: DataFrame = strat dataframe
:returns:
dataframe: DataFrame = strat dataframe with return values attached
"""
df = self.model_return_values[pair]
2022-07-03 08:59:38 +00:00
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
2022-07-02 16:09:38 +00:00
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
return dataframe
def return_null_values_to_strategy(self, dataframe: DataFrame, dk) -> None:
"""
Build 0 filled dataframe to return to strategy
"""
2022-07-02 16:09:38 +00:00
dk.find_features(dataframe)
for label in dk.label_list:
dataframe[label] = 0
dataframe[f"{label}_mean"] = 0
dataframe[f"{label}_std"] = 0
# dataframe['prediction'] = 0
2022-07-03 08:59:38 +00:00
dataframe["do_predict"] = 0
2022-07-03 08:59:38 +00:00
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
dataframe["DI_value"] = 0
2022-07-02 16:09:38 +00:00
dk.return_dataframe = dataframe
def purge_old_models(self) -> None:
model_folders = [x for x in self.full_path.iterdir() if x.is_dir()]
pattern = re.compile(r"sub-train-(\w+)(\d{10})")
delete_dict: Dict[str, Any] = {}
for dir in model_folders:
result = pattern.match(str(dir.name))
if result is None:
break
coin = result.group(1)
timestamp = result.group(2)
if coin not in delete_dict:
delete_dict[coin] = {}
2022-07-03 08:59:38 +00:00
delete_dict[coin]["num_folders"] = 1
delete_dict[coin]["timestamps"] = {int(timestamp): dir}
else:
2022-07-03 08:59:38 +00:00
delete_dict[coin]["num_folders"] += 1
delete_dict[coin]["timestamps"][int(timestamp)] = dir
for coin in delete_dict:
2022-07-03 08:59:38 +00:00
if delete_dict[coin]["num_folders"] > 2:
sorted_dict = collections.OrderedDict(
2022-07-03 08:59:38 +00:00
sorted(delete_dict[coin]["timestamps"].items())
)
num_delete = len(sorted_dict) - 2
deleted = 0
for k, v in sorted_dict.items():
if deleted >= num_delete:
break
2022-07-03 08:59:38 +00:00
logger.info(f"Freqai purging old model file {v}")
shutil.rmtree(v)
deleted += 1
def update_follower_metadata(self):
# follower needs to load from disk to get any changes made by leader to pair_dict
self.load_drawer_from_disk()
2022-07-03 08:59:38 +00:00
if self.config.get("freqai", {}).get("purge_old_models", False):
self.purge_old_models()
# to be used if we want to send predictions directly to the follower instead of forcing
# follower to load models and inference
# def save_model_return_values_to_disk(self) -> None:
# with open(self.full_path / str('model_return_values.json'), "w") as fp:
# json.dump(self.model_return_values, fp, default=self.np_encoder)
2022-07-02 16:09:38 +00:00
# def load_model_return_values_from_disk(self, dk: FreqaiDataKitchen) -> FreqaiDataKitchen:
# exists = Path(self.full_path / str('model_return_values.json')).resolve().exists()
# if exists:
# with open(self.full_path / str('model_return_values.json'), "r") as fp:
# self.model_return_values = json.load(fp)
# elif not self.follow_mode:
# logger.info("Could not find existing datadrawer, starting from scratch")
# else:
# logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
# 'sending null values back to strategy')
2022-07-02 16:09:38 +00:00
# return exists, dk