stable/freqtrade/freqai/data_drawer.py

186 lines
8.3 KiB
Python
Raw Normal View History

import copy
import json
import logging
from pathlib import Path
from typing import Any, Dict, Tuple
# import pickle as pk
import numpy as np
from pandas import DataFrame
# from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class FreqaiDataDrawer:
"""
Class aimed at holding all pair models/info in memory for better inferencing/retrainig/saving
/loading to/from disk.
This object remains persistent throughout live/dry, unlike FreqaiDataKitchen, which is
reinstantiated for each coin.
"""
def __init__(self, full_path: Path, pair_whitelist, follow_mode: bool = False):
# dictionary holding all pair metadata necessary to load in from disk
self.pair_dict: Dict[str, Any] = {}
# dictionary holding all actively inferenced models in memory given a model filename
self.model_dictionary: Dict[str, Any] = {}
self.model_return_values: Dict[str, Any] = {}
self.pair_data_dict: Dict[str, Any] = {}
self.full_path = full_path
self.follow_mode = follow_mode
self.load_drawer_from_disk()
self.training_queue: Dict[str, int] = {}
# self.create_training_queue(pair_whitelist)
def load_drawer_from_disk(self):
exists = Path(self.full_path / str('pair_dictionary.json')).resolve().exists()
if exists:
with open(self.full_path / str('pair_dictionary.json'), "r") as fp:
self.pair_dict = json.load(fp)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
'sending null values back to strategy')
return exists
def save_drawer_to_disk(self):
with open(self.full_path / str('pair_dictionary.json'), "w") as fp:
json.dump(self.pair_dict, fp, default=self.np_encoder)
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()
def get_pair_dict_info(self, metadata: dict) -> Tuple[str, int, bool, bool]:
pair_in_dict = self.pair_dict.get(metadata['pair'])
data_path_set = self.pair_dict.get(metadata['pair'], {}).get('data_path', None)
return_null_array = False
if pair_in_dict:
model_filename = self.pair_dict[metadata['pair']]['model_filename']
trained_timestamp = self.pair_dict[metadata['pair']]['trained_timestamp']
coin_first = self.pair_dict[metadata['pair']]['first']
elif not self.follow_mode:
self.pair_dict[metadata['pair']] = {}
model_filename = self.pair_dict[metadata['pair']]['model_filename'] = ''
coin_first = self.pair_dict[metadata['pair']]['first'] = True
trained_timestamp = self.pair_dict[metadata['pair']]['trained_timestamp'] = 0
if not data_path_set and self.follow_mode:
logger.warning(f'Follower could not find current pair {metadata["pair"]} in '
f'pair_dictionary at path {self.full_path}, sending null values '
'back to strategy.')
return_null_array = True
return model_filename, trained_timestamp, coin_first, return_null_array
def set_pair_dict_info(self, metadata: dict) -> None:
pair_in_dict = self.pair_dict.get(metadata['pair'])
if pair_in_dict:
return
else:
self.pair_dict[metadata['pair']] = {}
self.pair_dict[metadata['pair']]['model_filename'] = ''
self.pair_dict[metadata['pair']]['first'] = True
self.pair_dict[metadata['pair']]['trained_timestamp'] = 0
self.pair_dict[metadata['pair']]['priority'] = len(self.pair_dict)
return
# def create_training_queue(self, pairs: list) -> None:
# for i, pair in enumerate(pairs):
# self.training_queue[pair] = i + 1
def pair_to_end_of_training_queue(self, pair: str) -> None:
# march all pairs up in the queue
for p in self.pair_dict:
self.pair_dict[p]['priority'] -= 1
# send pair to end of queue
self.pair_dict[pair]['priority'] = len(self.pair_dict)
2022-05-30 10:48:22 +00:00
def set_initial_return_values(self, pair: str, dh):
self.model_return_values[pair] = {}
self.model_return_values[pair]['predictions'] = dh.full_predictions
self.model_return_values[pair]['do_preds'] = dh.full_do_predict
self.model_return_values[pair]['target_mean'] = dh.full_target_mean
self.model_return_values[pair]['target_std'] = dh.full_target_std
# if not self.follow_mode:
# self.save_model_return_values_to_disk()
2022-05-30 10:48:22 +00:00
def append_model_predictions(self, pair: str, predictions, do_preds,
target_mean, target_std, dh, len_df) -> None:
# strat seems to feed us variable sized dataframes - and since we are trying to build our
# own return array in the same shape, we need to figure out how the size has changed
# and adapt our stored/returned info accordingly.
length_difference = len(self.model_return_values[pair]['predictions']) - len_df
i = 0
if length_difference == 0:
i = 1
elif length_difference > 0:
i = length_difference + 1
self.model_return_values[pair]['predictions'] = np.append(
self.model_return_values[pair]['predictions'][i:], predictions[-1])
self.model_return_values[pair]['do_preds'] = np.append(
self.model_return_values[pair]['do_preds'][i:], do_preds[-1])
self.model_return_values[pair]['target_mean'] = np.append(
self.model_return_values[pair]['target_mean'][i:], target_mean)
self.model_return_values[pair]['target_std'] = np.append(
self.model_return_values[pair]['target_std'][i:], target_std)
if length_difference < 0:
prepend = np.zeros(abs(length_difference) - 1)
self.model_return_values[pair]['predictions'] = np.insert(
self.model_return_values[pair]['predictions'], 0, prepend)
self.model_return_values[pair]['do_preds'] = np.insert(
self.model_return_values[pair]['do_preds'], 0, prepend)
self.model_return_values[pair]['target_mean'] = np.insert(
self.model_return_values[pair]['target_mean'], 0, prepend)
self.model_return_values[pair]['target_std'] = np.insert(
self.model_return_values[pair]['target_std'], 0, prepend)
dh.full_predictions = copy.deepcopy(self.model_return_values[pair]['predictions'])
dh.full_do_predict = copy.deepcopy(self.model_return_values[pair]['do_preds'])
dh.full_target_mean = copy.deepcopy(self.model_return_values[pair]['target_mean'])
dh.full_target_std = copy.deepcopy(self.model_return_values[pair]['target_std'])
# if not self.follow_mode:
# self.save_model_return_values_to_disk()
def return_null_values_to_strategy(self, dataframe: DataFrame, dh) -> None:
len_df = len(dataframe)
dh.full_predictions = np.zeros(len_df)
dh.full_do_predict = np.zeros(len_df)
dh.full_target_mean = np.zeros(len_df)
dh.full_target_std = np.zeros(len_df)
# to be used if we want to send predictions directly to the follower instead of forcing
# follower to load models and inference
# def save_model_return_values_to_disk(self) -> None:
# with open(self.full_path / str('model_return_values.json'), "w") as fp:
# json.dump(self.model_return_values, fp, default=self.np_encoder)
# def load_model_return_values_from_disk(self, dh: FreqaiDataKitchen) -> FreqaiDataKitchen:
# exists = Path(self.full_path / str('model_return_values.json')).resolve().exists()
# if exists:
# with open(self.full_path / str('model_return_values.json'), "r") as fp:
# self.model_return_values = json.load(fp)
# elif not self.follow_mode:
# logger.info("Could not find existing datadrawer, starting from scratch")
# else:
# logger.warning(f'Follower could not find pair_dictionary at {self.full_path} '
# 'sending null values back to strategy')
# return exists, dh