2018-10-30 19:02:01 +00:00
|
|
|
from typing import NamedTuple, List
|
|
|
|
|
|
|
|
import arrow
|
|
|
|
from pandas import DataFrame
|
|
|
|
|
|
|
|
from freqtrade.strategy.interface import SellType
|
2018-11-09 18:34:18 +00:00
|
|
|
from freqtrade.constants import TICKER_INTERVAL_MINUTES
|
2018-10-30 19:02:01 +00:00
|
|
|
|
|
|
|
ticker_start_time = arrow.get(2018, 10, 3)
|
2018-11-09 18:34:18 +00:00
|
|
|
tests_ticker_interval = "1h"
|
2018-10-30 19:02:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
class BTrade(NamedTuple):
|
|
|
|
"""
|
|
|
|
Minimalistic Trade result used for functional backtesting
|
|
|
|
"""
|
|
|
|
sell_reason: SellType
|
|
|
|
open_tick: int
|
|
|
|
close_tick: int
|
|
|
|
|
|
|
|
|
|
|
|
class BTContainer(NamedTuple):
|
|
|
|
"""
|
|
|
|
Minimal BacktestContainer defining Backtest inputs and results.
|
|
|
|
"""
|
|
|
|
data: List[float]
|
|
|
|
stop_loss: float
|
|
|
|
roi: float
|
|
|
|
trades: List[BTrade]
|
|
|
|
profit_perc: float
|
|
|
|
|
|
|
|
|
|
|
|
def _get_frame_time_from_offset(offset):
|
2018-11-24 09:38:30 +00:00
|
|
|
return ticker_start_time.shift(minutes=(offset * TICKER_INTERVAL_MINUTES[tests_ticker_interval])
|
2019-03-23 14:24:11 +00:00
|
|
|
).datetime
|
2018-10-30 19:02:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _build_backtest_dataframe(ticker_with_signals):
|
|
|
|
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
|
|
|
|
|
|
|
frame = DataFrame.from_records(ticker_with_signals, columns=columns)
|
|
|
|
frame['date'] = frame['date'].apply(_get_frame_time_from_offset)
|
|
|
|
# Ensure floats are in place
|
|
|
|
for column in ['open', 'high', 'low', 'close', 'volume']:
|
|
|
|
frame[column] = frame[column].astype('float64')
|
|
|
|
return frame
|