kilo/docs/vpn.md
2019-05-03 12:55:01 +02:00

62 lines
1.8 KiB
Markdown

# VPN
Kilo enables peers outside of a Kubernetes cluster to connect to the created WireGuard network.
This enables several use cases, for example:
* giving cluster applications secure access to external services, e.g. services behind a corporate VPN;
* allowing external services to access the cluster; and
* enabling developers and support to securely debug cluster resources.
In order to declare a peer, start by defining a Kilo Peer resource.
See the following `peer.yaml`, where the `publicKey` field holds a [generated WireGuard public key](https://www.wireguard.com/quickstart/#key-generation):
```yaml
apiVersion: kilo.squat.ai/v1alpha1
kind: Peer
metadata:
name: squat
spec:
allowedIPs:
- 10.4.1.1/32
publicKey: GY5aT1N9dTR/nJnT1N2f4ClZWVj0jOAld0r8ysWLyjg=
persistentKeepalive: 10
```
Then, apply the resource to the cluster:
```shell
kubectl apply -f peer.yaml
```
Now, the `kgctl` tool can be used to generate the WireGuard configuration for the newly defined peer:
```shell
PEER=squat
kgctl --kubeconfig=$KUBECONFIG showconf peer $PEER
```
This will produce some output like:
```ini
[Peer]
PublicKey = 2/xU029dz/WtvMZAbnSzmhicl8U1/Y3NYmunRr8EJ0Q=
AllowedIPs = 10.4.0.2/32, 10.2.3.0/24, 10.1.0.3/32
Endpoint = 108.61.142.123:51820
```
The configuration can then be applied to a local WireGuard interface, e.g. `wg0`:
```shell
IFACE=wg0
kgctl --kubeconfig=$KUBECONFIG showconf peer $PEER > peer.ini
sudo wg setconf $IFACE peer.ini
```
Finally, in order to access the cluster, the client will need appropriate routes for the new configuration.
For example, on a Linux machine, the creation of these routes could be automated by running:
```shell
for ip in $(kgctl --kubeconfig=$KUBECONFIG showconf peer $PEER | grep AllowedIPs | cut -f 3- -d ' ' | tr -d ','); do
sudo ip route add $ip dev $IFACE
done
```