staticcheck (#313)

* CI: use staticcheck for linting

This commit switches the linter for Go code from golint to staticcheck.
Golint has been deprecated since last year and staticcheck is a
recommended replacement.

Signed-off-by: Lucas Servén Marín <lserven@gmail.com>

* revendor

Signed-off-by: Lucas Servén Marín <lserven@gmail.com>

* cmd,pkg: fix lint warnings

Signed-off-by: Lucas Servén Marín <lserven@gmail.com>
This commit is contained in:
Lucas Servén Marín
2022-05-19 19:45:43 +02:00
committed by GitHub
parent 93f46e03ea
commit 50fbc2eec2
227 changed files with 55458 additions and 2689 deletions

View File

@@ -0,0 +1,428 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package analysisinternal exposes internal-only fields from go/analysis.
package analysisinternal
import (
"bytes"
"fmt"
"go/ast"
"go/token"
"go/types"
"strings"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/internal/lsp/fuzzy"
)
// Flag to gate diagnostics for fuzz tests in 1.18.
var DiagnoseFuzzTests bool = false
var (
GetTypeErrors func(p interface{}) []types.Error
SetTypeErrors func(p interface{}, errors []types.Error)
)
func TypeErrorEndPos(fset *token.FileSet, src []byte, start token.Pos) token.Pos {
// Get the end position for the type error.
offset, end := fset.PositionFor(start, false).Offset, start
if offset >= len(src) {
return end
}
if width := bytes.IndexAny(src[offset:], " \n,():;[]+-*"); width > 0 {
end = start + token.Pos(width)
}
return end
}
func ZeroValue(fset *token.FileSet, f *ast.File, pkg *types.Package, typ types.Type) ast.Expr {
under := typ
if n, ok := typ.(*types.Named); ok {
under = n.Underlying()
}
switch u := under.(type) {
case *types.Basic:
switch {
case u.Info()&types.IsNumeric != 0:
return &ast.BasicLit{Kind: token.INT, Value: "0"}
case u.Info()&types.IsBoolean != 0:
return &ast.Ident{Name: "false"}
case u.Info()&types.IsString != 0:
return &ast.BasicLit{Kind: token.STRING, Value: `""`}
default:
panic("unknown basic type")
}
case *types.Chan, *types.Interface, *types.Map, *types.Pointer, *types.Signature, *types.Slice, *types.Array:
return ast.NewIdent("nil")
case *types.Struct:
texpr := TypeExpr(fset, f, pkg, typ) // typ because we want the name here.
if texpr == nil {
return nil
}
return &ast.CompositeLit{
Type: texpr,
}
}
return nil
}
// IsZeroValue checks whether the given expression is a 'zero value' (as determined by output of
// analysisinternal.ZeroValue)
func IsZeroValue(expr ast.Expr) bool {
switch e := expr.(type) {
case *ast.BasicLit:
return e.Value == "0" || e.Value == `""`
case *ast.Ident:
return e.Name == "nil" || e.Name == "false"
default:
return false
}
}
func TypeExpr(fset *token.FileSet, f *ast.File, pkg *types.Package, typ types.Type) ast.Expr {
switch t := typ.(type) {
case *types.Basic:
switch t.Kind() {
case types.UnsafePointer:
return &ast.SelectorExpr{X: ast.NewIdent("unsafe"), Sel: ast.NewIdent("Pointer")}
default:
return ast.NewIdent(t.Name())
}
case *types.Pointer:
x := TypeExpr(fset, f, pkg, t.Elem())
if x == nil {
return nil
}
return &ast.UnaryExpr{
Op: token.MUL,
X: x,
}
case *types.Array:
elt := TypeExpr(fset, f, pkg, t.Elem())
if elt == nil {
return nil
}
return &ast.ArrayType{
Len: &ast.BasicLit{
Kind: token.INT,
Value: fmt.Sprintf("%d", t.Len()),
},
Elt: elt,
}
case *types.Slice:
elt := TypeExpr(fset, f, pkg, t.Elem())
if elt == nil {
return nil
}
return &ast.ArrayType{
Elt: elt,
}
case *types.Map:
key := TypeExpr(fset, f, pkg, t.Key())
value := TypeExpr(fset, f, pkg, t.Elem())
if key == nil || value == nil {
return nil
}
return &ast.MapType{
Key: key,
Value: value,
}
case *types.Chan:
dir := ast.ChanDir(t.Dir())
if t.Dir() == types.SendRecv {
dir = ast.SEND | ast.RECV
}
value := TypeExpr(fset, f, pkg, t.Elem())
if value == nil {
return nil
}
return &ast.ChanType{
Dir: dir,
Value: value,
}
case *types.Signature:
var params []*ast.Field
for i := 0; i < t.Params().Len(); i++ {
p := TypeExpr(fset, f, pkg, t.Params().At(i).Type())
if p == nil {
return nil
}
params = append(params, &ast.Field{
Type: p,
Names: []*ast.Ident{
{
Name: t.Params().At(i).Name(),
},
},
})
}
var returns []*ast.Field
for i := 0; i < t.Results().Len(); i++ {
r := TypeExpr(fset, f, pkg, t.Results().At(i).Type())
if r == nil {
return nil
}
returns = append(returns, &ast.Field{
Type: r,
})
}
return &ast.FuncType{
Params: &ast.FieldList{
List: params,
},
Results: &ast.FieldList{
List: returns,
},
}
case *types.Named:
if t.Obj().Pkg() == nil {
return ast.NewIdent(t.Obj().Name())
}
if t.Obj().Pkg() == pkg {
return ast.NewIdent(t.Obj().Name())
}
pkgName := t.Obj().Pkg().Name()
// If the file already imports the package under another name, use that.
for _, group := range astutil.Imports(fset, f) {
for _, cand := range group {
if strings.Trim(cand.Path.Value, `"`) == t.Obj().Pkg().Path() {
if cand.Name != nil && cand.Name.Name != "" {
pkgName = cand.Name.Name
}
}
}
}
if pkgName == "." {
return ast.NewIdent(t.Obj().Name())
}
return &ast.SelectorExpr{
X: ast.NewIdent(pkgName),
Sel: ast.NewIdent(t.Obj().Name()),
}
case *types.Struct:
return ast.NewIdent(t.String())
case *types.Interface:
return ast.NewIdent(t.String())
default:
return nil
}
}
type TypeErrorPass string
const (
NoNewVars TypeErrorPass = "nonewvars"
NoResultValues TypeErrorPass = "noresultvalues"
UndeclaredName TypeErrorPass = "undeclaredname"
)
// StmtToInsertVarBefore returns the ast.Stmt before which we can safely insert a new variable.
// Some examples:
//
// Basic Example:
// z := 1
// y := z + x
// If x is undeclared, then this function would return `y := z + x`, so that we
// can insert `x := ` on the line before `y := z + x`.
//
// If stmt example:
// if z == 1 {
// } else if z == y {}
// If y is undeclared, then this function would return `if z == 1 {`, because we cannot
// insert a statement between an if and an else if statement. As a result, we need to find
// the top of the if chain to insert `y := ` before.
func StmtToInsertVarBefore(path []ast.Node) ast.Stmt {
enclosingIndex := -1
for i, p := range path {
if _, ok := p.(ast.Stmt); ok {
enclosingIndex = i
break
}
}
if enclosingIndex == -1 {
return nil
}
enclosingStmt := path[enclosingIndex]
switch enclosingStmt.(type) {
case *ast.IfStmt:
// The enclosingStmt is inside of the if declaration,
// We need to check if we are in an else-if stmt and
// get the base if statement.
return baseIfStmt(path, enclosingIndex)
case *ast.CaseClause:
// Get the enclosing switch stmt if the enclosingStmt is
// inside of the case statement.
for i := enclosingIndex + 1; i < len(path); i++ {
if node, ok := path[i].(*ast.SwitchStmt); ok {
return node
} else if node, ok := path[i].(*ast.TypeSwitchStmt); ok {
return node
}
}
}
if len(path) <= enclosingIndex+1 {
return enclosingStmt.(ast.Stmt)
}
// Check if the enclosing statement is inside another node.
switch expr := path[enclosingIndex+1].(type) {
case *ast.IfStmt:
// Get the base if statement.
return baseIfStmt(path, enclosingIndex+1)
case *ast.ForStmt:
if expr.Init == enclosingStmt || expr.Post == enclosingStmt {
return expr
}
}
return enclosingStmt.(ast.Stmt)
}
// baseIfStmt walks up the if/else-if chain until we get to
// the top of the current if chain.
func baseIfStmt(path []ast.Node, index int) ast.Stmt {
stmt := path[index]
for i := index + 1; i < len(path); i++ {
if node, ok := path[i].(*ast.IfStmt); ok && node.Else == stmt {
stmt = node
continue
}
break
}
return stmt.(ast.Stmt)
}
// WalkASTWithParent walks the AST rooted at n. The semantics are
// similar to ast.Inspect except it does not call f(nil).
func WalkASTWithParent(n ast.Node, f func(n ast.Node, parent ast.Node) bool) {
var ancestors []ast.Node
ast.Inspect(n, func(n ast.Node) (recurse bool) {
if n == nil {
ancestors = ancestors[:len(ancestors)-1]
return false
}
var parent ast.Node
if len(ancestors) > 0 {
parent = ancestors[len(ancestors)-1]
}
ancestors = append(ancestors, n)
return f(n, parent)
})
}
// FindMatchingIdents finds all identifiers in 'node' that match any of the given types.
// 'pos' represents the position at which the identifiers may be inserted. 'pos' must be within
// the scope of each of identifier we select. Otherwise, we will insert a variable at 'pos' that
// is unrecognized.
func FindMatchingIdents(typs []types.Type, node ast.Node, pos token.Pos, info *types.Info, pkg *types.Package) map[types.Type][]*ast.Ident {
matches := map[types.Type][]*ast.Ident{}
// Initialize matches to contain the variable types we are searching for.
for _, typ := range typs {
if typ == nil {
continue
}
matches[typ] = []*ast.Ident{}
}
seen := map[types.Object]struct{}{}
ast.Inspect(node, func(n ast.Node) bool {
if n == nil {
return false
}
// Prevent circular definitions. If 'pos' is within an assignment statement, do not
// allow any identifiers in that assignment statement to be selected. Otherwise,
// we could do the following, where 'x' satisfies the type of 'f0':
//
// x := fakeStruct{f0: x}
//
assignment, ok := n.(*ast.AssignStmt)
if ok && pos > assignment.Pos() && pos <= assignment.End() {
return false
}
if n.End() > pos {
return n.Pos() <= pos
}
ident, ok := n.(*ast.Ident)
if !ok || ident.Name == "_" {
return true
}
obj := info.Defs[ident]
if obj == nil || obj.Type() == nil {
return true
}
if _, ok := obj.(*types.TypeName); ok {
return true
}
// Prevent duplicates in matches' values.
if _, ok = seen[obj]; ok {
return true
}
seen[obj] = struct{}{}
// Find the scope for the given position. Then, check whether the object
// exists within the scope.
innerScope := pkg.Scope().Innermost(pos)
if innerScope == nil {
return true
}
_, foundObj := innerScope.LookupParent(ident.Name, pos)
if foundObj != obj {
return true
}
// The object must match one of the types that we are searching for.
if idents, ok := matches[obj.Type()]; ok {
matches[obj.Type()] = append(idents, ast.NewIdent(ident.Name))
}
// If the object type does not exactly match any of the target types, greedily
// find the first target type that the object type can satisfy.
for typ := range matches {
if obj.Type() == typ {
continue
}
if equivalentTypes(obj.Type(), typ) {
matches[typ] = append(matches[typ], ast.NewIdent(ident.Name))
}
}
return true
})
return matches
}
func equivalentTypes(want, got types.Type) bool {
if want == got || types.Identical(want, got) {
return true
}
// Code segment to help check for untyped equality from (golang/go#32146).
if rhs, ok := want.(*types.Basic); ok && rhs.Info()&types.IsUntyped > 0 {
if lhs, ok := got.Underlying().(*types.Basic); ok {
return rhs.Info()&types.IsConstType == lhs.Info()&types.IsConstType
}
}
return types.AssignableTo(want, got)
}
// FindBestMatch employs fuzzy matching to evaluate the similarity of each given identifier to the
// given pattern. We return the identifier whose name is most similar to the pattern.
func FindBestMatch(pattern string, idents []*ast.Ident) ast.Expr {
fuzz := fuzzy.NewMatcher(pattern)
var bestFuzz ast.Expr
highScore := float32(0) // minimum score is 0 (no match)
for _, ident := range idents {
// TODO: Improve scoring algorithm.
score := fuzz.Score(ident.Name)
if score > highScore {
highScore = score
bestFuzz = ident
} else if score == 0 {
// Order matters in the fuzzy matching algorithm. If we find no match
// when matching the target to the identifier, try matching the identifier
// to the target.
revFuzz := fuzzy.NewMatcher(ident.Name)
revScore := revFuzz.Score(pattern)
if revScore > highScore {
highScore = revScore
bestFuzz = ident
}
}
}
return bestFuzz
}

View File

@@ -9,7 +9,6 @@ import (
"bytes"
"context"
"fmt"
exec "golang.org/x/sys/execabs"
"io"
"os"
"regexp"
@@ -18,6 +17,8 @@ import (
"sync"
"time"
exec "golang.org/x/sys/execabs"
"golang.org/x/tools/internal/event"
)
@@ -131,9 +132,16 @@ type Invocation struct {
Verb string
Args []string
BuildFlags []string
ModFlag string
ModFile string
Overlay string
// If ModFlag is set, the go command is invoked with -mod=ModFlag.
ModFlag string
// If ModFile is set, the go command is invoked with -modfile=ModFile.
ModFile string
// If Overlay is set, the go command is invoked with -overlay=Overlay.
Overlay string
// If CleanEnv is set, the invocation will run only with the environment
// in Env, not starting with os.Environ.
CleanEnv bool

View File

@@ -38,10 +38,10 @@ var modFlagRegexp = regexp.MustCompile(`-mod[ =](\w+)`)
// with the supplied context.Context and Invocation. The Invocation can contain pre-defined fields,
// of which only Verb and Args are modified to run the appropriate Go command.
// Inspired by setDefaultBuildMod in modload/init.go
func VendorEnabled(ctx context.Context, inv Invocation, r *Runner) (*ModuleJSON, bool, error) {
func VendorEnabled(ctx context.Context, inv Invocation, r *Runner) (bool, *ModuleJSON, error) {
mainMod, go114, err := getMainModuleAnd114(ctx, inv, r)
if err != nil {
return nil, false, err
return false, nil, err
}
// We check the GOFLAGS to see if there is anything overridden or not.
@@ -49,7 +49,7 @@ func VendorEnabled(ctx context.Context, inv Invocation, r *Runner) (*ModuleJSON,
inv.Args = []string{"GOFLAGS"}
stdout, err := r.Run(ctx, inv)
if err != nil {
return nil, false, err
return false, nil, err
}
goflags := string(bytes.TrimSpace(stdout.Bytes()))
matches := modFlagRegexp.FindStringSubmatch(goflags)
@@ -57,25 +57,27 @@ func VendorEnabled(ctx context.Context, inv Invocation, r *Runner) (*ModuleJSON,
if len(matches) != 0 {
modFlag = matches[1]
}
if modFlag != "" {
// Don't override an explicit '-mod=' argument.
return mainMod, modFlag == "vendor", nil
// Don't override an explicit '-mod=' argument.
if modFlag == "vendor" {
return true, mainMod, nil
} else if modFlag != "" {
return false, nil, nil
}
if mainMod == nil || !go114 {
return mainMod, false, nil
return false, nil, nil
}
// Check 1.14's automatic vendor mode.
if fi, err := os.Stat(filepath.Join(mainMod.Dir, "vendor")); err == nil && fi.IsDir() {
if mainMod.GoVersion != "" && semver.Compare("v"+mainMod.GoVersion, "v1.14") >= 0 {
// The Go version is at least 1.14, and a vendor directory exists.
// Set -mod=vendor by default.
return mainMod, true, nil
return true, mainMod, nil
}
}
return mainMod, false, nil
return false, nil, nil
}
// getMainModuleAnd114 gets the main module's information and whether the
// getMainModuleAnd114 gets one of the main modules' information and whether the
// go command in use is 1.14+. This is the information needed to figure out
// if vendoring should be enabled.
func getMainModuleAnd114(ctx context.Context, inv Invocation, r *Runner) (*ModuleJSON, bool, error) {

View File

@@ -306,7 +306,7 @@ func matchSpace(orig []byte, src []byte) []byte {
return b.Bytes()
}
var impLine = regexp.MustCompile(`^\s+(?:[\w\.]+\s+)?"(.+)"`)
var impLine = regexp.MustCompile(`^\s+(?:[\w\.]+\s+)?"(.+?)"`)
func addImportSpaces(r io.Reader, breaks []string) ([]byte, error) {
var out bytes.Buffer

View File

@@ -34,7 +34,8 @@ type ModuleResolver struct {
scannedRoots map[gopathwalk.Root]bool
initialized bool
main *gocommand.ModuleJSON
mains []*gocommand.ModuleJSON
mainByDir map[string]*gocommand.ModuleJSON
modsByModPath []*gocommand.ModuleJSON // All modules, ordered by # of path components in module Path...
modsByDir []*gocommand.ModuleJSON // ...or Dir.
@@ -69,21 +70,21 @@ func (r *ModuleResolver) init() error {
Logf: r.env.Logf,
WorkingDir: r.env.WorkingDir,
}
mainMod, vendorEnabled, err := gocommand.VendorEnabled(context.TODO(), inv, r.env.GocmdRunner)
vendorEnabled, mainModVendor, err := gocommand.VendorEnabled(context.TODO(), inv, r.env.GocmdRunner)
if err != nil {
return err
}
if mainMod != nil && vendorEnabled {
if mainModVendor != nil && vendorEnabled {
// Vendor mode is on, so all the non-Main modules are irrelevant,
// and we need to search /vendor for everything.
r.main = mainMod
r.mains = []*gocommand.ModuleJSON{mainModVendor}
r.dummyVendorMod = &gocommand.ModuleJSON{
Path: "",
Dir: filepath.Join(mainMod.Dir, "vendor"),
Dir: filepath.Join(mainModVendor.Dir, "vendor"),
}
r.modsByModPath = []*gocommand.ModuleJSON{mainMod, r.dummyVendorMod}
r.modsByDir = []*gocommand.ModuleJSON{mainMod, r.dummyVendorMod}
r.modsByModPath = []*gocommand.ModuleJSON{mainModVendor, r.dummyVendorMod}
r.modsByDir = []*gocommand.ModuleJSON{mainModVendor, r.dummyVendorMod}
} else {
// Vendor mode is off, so run go list -m ... to find everything.
err := r.initAllMods()
@@ -122,8 +123,10 @@ func (r *ModuleResolver) init() error {
r.roots = []gopathwalk.Root{
{filepath.Join(goenv["GOROOT"], "/src"), gopathwalk.RootGOROOT},
}
if r.main != nil {
r.roots = append(r.roots, gopathwalk.Root{r.main.Dir, gopathwalk.RootCurrentModule})
r.mainByDir = make(map[string]*gocommand.ModuleJSON)
for _, main := range r.mains {
r.roots = append(r.roots, gopathwalk.Root{main.Dir, gopathwalk.RootCurrentModule})
r.mainByDir[main.Dir] = main
}
if vendorEnabled {
r.roots = append(r.roots, gopathwalk.Root{r.dummyVendorMod.Dir, gopathwalk.RootOther})
@@ -189,7 +192,7 @@ func (r *ModuleResolver) initAllMods() error {
r.modsByModPath = append(r.modsByModPath, mod)
r.modsByDir = append(r.modsByDir, mod)
if mod.Main {
r.main = mod
r.mains = append(r.mains, mod)
}
}
return nil
@@ -609,7 +612,7 @@ func (r *ModuleResolver) scanDirForPackage(root gopathwalk.Root, dir string) dir
}
switch root.Type {
case gopathwalk.RootCurrentModule:
importPath = path.Join(r.main.Path, filepath.ToSlash(subdir))
importPath = path.Join(r.mainByDir[root.Path].Path, filepath.ToSlash(subdir))
case gopathwalk.RootModuleCache:
matches := modCacheRegexp.FindStringSubmatch(subdir)
if len(matches) == 0 {

View File

@@ -9,6 +9,7 @@ package imports
import (
"go/ast"
"go/token"
"log"
"sort"
"strconv"
)
@@ -60,6 +61,7 @@ func sortImports(localPrefix string, fset *token.FileSet, f *ast.File) {
// mergeImports merges all the import declarations into the first one.
// Taken from golang.org/x/tools/ast/astutil.
// This does not adjust line numbers properly
func mergeImports(fset *token.FileSet, f *ast.File) {
if len(f.Decls) <= 1 {
return
@@ -237,8 +239,17 @@ func sortSpecs(localPrefix string, fset *token.FileSet, f *ast.File, specs []ast
p := s.Pos()
line := fset.File(p).Line(p)
for previousLine := line - 1; previousLine >= firstSpecLine; {
fset.File(p).MergeLine(previousLine)
previousLine--
// MergeLine can panic. Avoid the panic at the cost of not removing the blank line
// golang/go#50329
if previousLine > 0 && previousLine < fset.File(p).LineCount() {
fset.File(p).MergeLine(previousLine)
previousLine--
} else {
// try to gather some data to diagnose how this could happen
req := "Please report what the imports section of your go file looked like."
log.Printf("panic avoided: first:%d line:%d previous:%d max:%d. %s",
firstSpecLine, line, previousLine, fset.File(p).LineCount(), req)
}
}
}
return specs

View File

@@ -180,6 +180,8 @@ var stdlib = map[string][]string{
"NewReader",
"NewWriter",
"Order",
"Reader",
"Writer",
},
"compress/zlib": []string{
"BestCompression",
@@ -641,7 +643,9 @@ var stdlib = map[string][]string{
"Named",
"NamedArg",
"NullBool",
"NullByte",
"NullFloat64",
"NullInt16",
"NullInt32",
"NullInt64",
"NullString",
@@ -2248,6 +2252,7 @@ var stdlib = map[string][]string{
"SHT_LOOS",
"SHT_LOPROC",
"SHT_LOUSER",
"SHT_MIPS_ABIFLAGS",
"SHT_NOBITS",
"SHT_NOTE",
"SHT_NULL",
@@ -3061,6 +3066,7 @@ var stdlib = map[string][]string{
"ParseExpr",
"ParseExprFrom",
"ParseFile",
"SkipObjectResolution",
"SpuriousErrors",
"Trace",
},
@@ -3441,6 +3447,7 @@ var stdlib = map[string][]string{
"Pt",
"RGBA",
"RGBA64",
"RGBA64Image",
"Rect",
"Rectangle",
"RegisterFormat",
@@ -3507,6 +3514,7 @@ var stdlib = map[string][]string{
"Op",
"Over",
"Quantizer",
"RGBA64Image",
"Src",
},
"image/gif": []string{
@@ -3612,6 +3620,7 @@ var stdlib = map[string][]string{
"FS",
"File",
"FileInfo",
"FileInfoToDirEntry",
"FileMode",
"Glob",
"GlobFS",
@@ -3772,15 +3781,18 @@ var stdlib = map[string][]string{
"Max",
"MaxFloat32",
"MaxFloat64",
"MaxInt",
"MaxInt16",
"MaxInt32",
"MaxInt64",
"MaxInt8",
"MaxUint",
"MaxUint16",
"MaxUint32",
"MaxUint64",
"MaxUint8",
"Min",
"MinInt",
"MinInt16",
"MinInt32",
"MinInt64",
@@ -4078,6 +4090,7 @@ var stdlib = map[string][]string{
"UnknownNetworkError",
},
"net/http": []string{
"AllowQuerySemicolons",
"CanonicalHeaderKey",
"Client",
"CloseNotifier",
@@ -4660,6 +4673,7 @@ var stdlib = map[string][]string{
"Value",
"ValueError",
"ValueOf",
"VisibleFields",
"Zero",
},
"regexp": []string{
@@ -4799,6 +4813,10 @@ var stdlib = map[string][]string{
"UnlockOSThread",
"Version",
},
"runtime/cgo": []string{
"Handle",
"NewHandle",
},
"runtime/debug": []string{
"BuildInfo",
"FreeOSMemory",
@@ -4915,6 +4933,7 @@ var stdlib = map[string][]string{
"QuoteRuneToGraphic",
"QuoteToASCII",
"QuoteToGraphic",
"QuotedPrefix",
"Unquote",
"UnquoteChar",
},
@@ -10334,6 +10353,7 @@ var stdlib = map[string][]string{
"PipeNode",
"Pos",
"RangeNode",
"SkipFuncCheck",
"StringNode",
"TemplateNode",
"TextNode",
@@ -10358,6 +10378,7 @@ var stdlib = map[string][]string{
"July",
"June",
"Kitchen",
"Layout",
"LoadLocation",
"LoadLocationFromTZData",
"Local",
@@ -10406,6 +10427,8 @@ var stdlib = map[string][]string{
"UTC",
"Unix",
"UnixDate",
"UnixMicro",
"UnixMilli",
"Until",
"Wednesday",
"Weekday",

183
vendor/golang.org/x/tools/internal/lsp/fuzzy/input.go generated vendored Normal file
View File

@@ -0,0 +1,183 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzzy
import (
"unicode"
)
// RuneRole specifies the role of a rune in the context of an input.
type RuneRole byte
const (
// RNone specifies a rune without any role in the input (i.e., whitespace/non-ASCII).
RNone RuneRole = iota
// RSep specifies a rune with the role of segment separator.
RSep
// RTail specifies a rune which is a lower-case tail in a word in the input.
RTail
// RUCTail specifies a rune which is an upper-case tail in a word in the input.
RUCTail
// RHead specifies a rune which is the first character in a word in the input.
RHead
)
// RuneRoles detects the roles of each byte rune in an input string and stores it in the output
// slice. The rune role depends on the input type. Stops when it parsed all the runes in the string
// or when it filled the output. If output is nil, then it gets created.
func RuneRoles(candidate []byte, reuse []RuneRole) []RuneRole {
var output []RuneRole
if cap(reuse) < len(candidate) {
output = make([]RuneRole, 0, len(candidate))
} else {
output = reuse[:0]
}
prev, prev2 := rtNone, rtNone
for i := 0; i < len(candidate); i++ {
r := rune(candidate[i])
role := RNone
curr := rtLower
if candidate[i] <= unicode.MaxASCII {
curr = runeType(rt[candidate[i]] - '0')
}
if curr == rtLower {
if prev == rtNone || prev == rtPunct {
role = RHead
} else {
role = RTail
}
} else if curr == rtUpper {
role = RHead
if prev == rtUpper {
// This and previous characters are both upper case.
if i+1 == len(candidate) {
// This is last character, previous was also uppercase -> this is UCTail
// i.e., (current char is C): aBC / BC / ABC
role = RUCTail
}
}
} else if curr == rtPunct {
switch r {
case '.', ':':
role = RSep
}
}
if curr != rtLower {
if i > 1 && output[i-1] == RHead && prev2 == rtUpper && (output[i-2] == RHead || output[i-2] == RUCTail) {
// The previous two characters were uppercase. The current one is not a lower case, so the
// previous one can't be a HEAD. Make it a UCTail.
// i.e., (last char is current char - B must be a UCTail): ABC / ZABC / AB.
output[i-1] = RUCTail
}
}
output = append(output, role)
prev2 = prev
prev = curr
}
return output
}
type runeType byte
const (
rtNone runeType = iota
rtPunct
rtLower
rtUpper
)
const rt = "00000000000000000000000000000000000000000000001122222222221000000333333333333333333333333330000002222222222222222222222222200000"
// LastSegment returns the substring representing the last segment from the input, where each
// byte has an associated RuneRole in the roles slice. This makes sense only for inputs of Symbol
// or Filename type.
func LastSegment(input string, roles []RuneRole) string {
// Exclude ending separators.
end := len(input) - 1
for end >= 0 && roles[end] == RSep {
end--
}
if end < 0 {
return ""
}
start := end - 1
for start >= 0 && roles[start] != RSep {
start--
}
return input[start+1 : end+1]
}
// fromChunks copies string chunks into the given buffer.
func fromChunks(chunks []string, buffer []byte) []byte {
ii := 0
for _, chunk := range chunks {
for i := 0; i < len(chunk); i++ {
if ii >= cap(buffer) {
break
}
buffer[ii] = chunk[i]
ii++
}
}
return buffer[:ii]
}
// toLower transforms the input string to lower case, which is stored in the output byte slice.
// The lower casing considers only ASCII values - non ASCII values are left unmodified.
// Stops when parsed all input or when it filled the output slice. If output is nil, then it gets
// created.
func toLower(input []byte, reuse []byte) []byte {
output := reuse
if cap(reuse) < len(input) {
output = make([]byte, len(input))
}
for i := 0; i < len(input); i++ {
r := rune(input[i])
if input[i] <= unicode.MaxASCII {
if 'A' <= r && r <= 'Z' {
r += 'a' - 'A'
}
}
output[i] = byte(r)
}
return output[:len(input)]
}
// WordConsumer defines a consumer for a word delimited by the [start,end) byte offsets in an input
// (start is inclusive, end is exclusive).
type WordConsumer func(start, end int)
// Words find word delimiters in an input based on its bytes' mappings to rune roles. The offset
// delimiters for each word are fed to the provided consumer function.
func Words(roles []RuneRole, consume WordConsumer) {
var wordStart int
for i, r := range roles {
switch r {
case RUCTail, RTail:
case RHead, RNone, RSep:
if i != wordStart {
consume(wordStart, i)
}
wordStart = i
if r != RHead {
// Skip this character.
wordStart = i + 1
}
}
}
if wordStart != len(roles) {
consume(wordStart, len(roles))
}
}

407
vendor/golang.org/x/tools/internal/lsp/fuzzy/matcher.go generated vendored Normal file
View File

@@ -0,0 +1,407 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fuzzy implements a fuzzy matching algorithm.
package fuzzy
import (
"bytes"
"fmt"
)
const (
// MaxInputSize is the maximum size of the input scored against the fuzzy matcher. Longer inputs
// will be truncated to this size.
MaxInputSize = 127
// MaxPatternSize is the maximum size of the pattern used to construct the fuzzy matcher. Longer
// inputs are truncated to this size.
MaxPatternSize = 63
)
type scoreVal int
func (s scoreVal) val() int {
return int(s) >> 1
}
func (s scoreVal) prevK() int {
return int(s) & 1
}
func score(val int, prevK int /*0 or 1*/) scoreVal {
return scoreVal(val<<1 + prevK)
}
// Matcher implements a fuzzy matching algorithm for scoring candidates against a pattern.
// The matcher does not support parallel usage.
type Matcher struct {
pattern string
patternLower []byte // lower-case version of the pattern
patternShort []byte // first characters of the pattern
caseSensitive bool // set if the pattern is mix-cased
patternRoles []RuneRole // the role of each character in the pattern
roles []RuneRole // the role of each character in the tested string
scores [MaxInputSize + 1][MaxPatternSize + 1][2]scoreVal
scoreScale float32
lastCandidateLen int // in bytes
lastCandidateMatched bool
// Reusable buffers to avoid allocating for every candidate.
// - inputBuf stores the concatenated input chunks
// - lowerBuf stores the last candidate in lower-case
// - rolesBuf stores the calculated roles for each rune in the last
// candidate.
inputBuf [MaxInputSize]byte
lowerBuf [MaxInputSize]byte
rolesBuf [MaxInputSize]RuneRole
}
func (m *Matcher) bestK(i, j int) int {
if m.scores[i][j][0].val() < m.scores[i][j][1].val() {
return 1
}
return 0
}
// NewMatcher returns a new fuzzy matcher for scoring candidates against the provided pattern.
func NewMatcher(pattern string) *Matcher {
if len(pattern) > MaxPatternSize {
pattern = pattern[:MaxPatternSize]
}
m := &Matcher{
pattern: pattern,
patternLower: toLower([]byte(pattern), nil),
}
for i, c := range m.patternLower {
if pattern[i] != c {
m.caseSensitive = true
break
}
}
if len(pattern) > 3 {
m.patternShort = m.patternLower[:3]
} else {
m.patternShort = m.patternLower
}
m.patternRoles = RuneRoles([]byte(pattern), nil)
if len(pattern) > 0 {
maxCharScore := 4
m.scoreScale = 1 / float32(maxCharScore*len(pattern))
}
return m
}
// Score returns the score returned by matching the candidate to the pattern.
// This is not designed for parallel use. Multiple candidates must be scored sequentially.
// Returns a score between 0 and 1 (0 - no match, 1 - perfect match).
func (m *Matcher) Score(candidate string) float32 {
return m.ScoreChunks([]string{candidate})
}
func (m *Matcher) ScoreChunks(chunks []string) float32 {
candidate := fromChunks(chunks, m.inputBuf[:])
if len(candidate) > MaxInputSize {
candidate = candidate[:MaxInputSize]
}
lower := toLower(candidate, m.lowerBuf[:])
m.lastCandidateLen = len(candidate)
if len(m.pattern) == 0 {
// Empty patterns perfectly match candidates.
return 1
}
if m.match(candidate, lower) {
sc := m.computeScore(candidate, lower)
if sc > minScore/2 && !m.poorMatch() {
m.lastCandidateMatched = true
if len(m.pattern) == len(candidate) {
// Perfect match.
return 1
}
if sc < 0 {
sc = 0
}
normalizedScore := float32(sc) * m.scoreScale
if normalizedScore > 1 {
normalizedScore = 1
}
return normalizedScore
}
}
m.lastCandidateMatched = false
return 0
}
const minScore = -10000
// MatchedRanges returns matches ranges for the last scored string as a flattened array of
// [begin, end) byte offset pairs.
func (m *Matcher) MatchedRanges() []int {
if len(m.pattern) == 0 || !m.lastCandidateMatched {
return nil
}
i, j := m.lastCandidateLen, len(m.pattern)
if m.scores[i][j][0].val() < minScore/2 && m.scores[i][j][1].val() < minScore/2 {
return nil
}
var ret []int
k := m.bestK(i, j)
for i > 0 {
take := (k == 1)
k = m.scores[i][j][k].prevK()
if take {
if len(ret) == 0 || ret[len(ret)-1] != i {
ret = append(ret, i)
ret = append(ret, i-1)
} else {
ret[len(ret)-1] = i - 1
}
j--
}
i--
}
// Reverse slice.
for i := 0; i < len(ret)/2; i++ {
ret[i], ret[len(ret)-1-i] = ret[len(ret)-1-i], ret[i]
}
return ret
}
func (m *Matcher) match(candidate []byte, candidateLower []byte) bool {
i, j := 0, 0
for ; i < len(candidateLower) && j < len(m.patternLower); i++ {
if candidateLower[i] == m.patternLower[j] {
j++
}
}
if j != len(m.patternLower) {
return false
}
// The input passes the simple test against pattern, so it is time to classify its characters.
// Character roles are used below to find the last segment.
m.roles = RuneRoles(candidate, m.rolesBuf[:])
return true
}
func (m *Matcher) computeScore(candidate []byte, candidateLower []byte) int {
pattLen, candLen := len(m.pattern), len(candidate)
for j := 0; j <= len(m.pattern); j++ {
m.scores[0][j][0] = minScore << 1
m.scores[0][j][1] = minScore << 1
}
m.scores[0][0][0] = score(0, 0) // Start with 0.
segmentsLeft, lastSegStart := 1, 0
for i := 0; i < candLen; i++ {
if m.roles[i] == RSep {
segmentsLeft++
lastSegStart = i + 1
}
}
// A per-character bonus for a consecutive match.
consecutiveBonus := 2
wordIdx := 0 // Word count within segment.
for i := 1; i <= candLen; i++ {
role := m.roles[i-1]
isHead := role == RHead
if isHead {
wordIdx++
} else if role == RSep && segmentsLeft > 1 {
wordIdx = 0
segmentsLeft--
}
var skipPenalty int
if i == 1 || (i-1) == lastSegStart {
// Skipping the start of first or last segment.
skipPenalty++
}
for j := 0; j <= pattLen; j++ {
// By default, we don't have a match. Fill in the skip data.
m.scores[i][j][1] = minScore << 1
// Compute the skip score.
k := 0
if m.scores[i-1][j][0].val() < m.scores[i-1][j][1].val() {
k = 1
}
skipScore := m.scores[i-1][j][k].val()
// Do not penalize missing characters after the last matched segment.
if j != pattLen {
skipScore -= skipPenalty
}
m.scores[i][j][0] = score(skipScore, k)
if j == 0 || candidateLower[i-1] != m.patternLower[j-1] {
// Not a match.
continue
}
pRole := m.patternRoles[j-1]
if role == RTail && pRole == RHead {
if j > 1 {
// Not a match: a head in the pattern matches a tail character in the candidate.
continue
}
// Special treatment for the first character of the pattern. We allow
// matches in the middle of a word if they are long enough, at least
// min(3, pattern.length) characters.
if !bytes.HasPrefix(candidateLower[i-1:], m.patternShort) {
continue
}
}
// Compute the char score.
var charScore int
// Bonus 1: the char is in the candidate's last segment.
if segmentsLeft <= 1 {
charScore++
}
// Bonus 2: Case match or a Head in the pattern aligns with one in the word.
// Single-case patterns lack segmentation signals and we assume any character
// can be a head of a segment.
if candidate[i-1] == m.pattern[j-1] || role == RHead && (!m.caseSensitive || pRole == RHead) {
charScore++
}
// Penalty 1: pattern char is Head, candidate char is Tail.
if role == RTail && pRole == RHead {
charScore--
}
// Penalty 2: first pattern character matched in the middle of a word.
if j == 1 && role == RTail {
charScore -= 4
}
// Third dimension encodes whether there is a gap between the previous match and the current
// one.
for k := 0; k < 2; k++ {
sc := m.scores[i-1][j-1][k].val() + charScore
isConsecutive := k == 1 || i-1 == 0 || i-1 == lastSegStart
if isConsecutive {
// Bonus 3: a consecutive match. First character match also gets a bonus to
// ensure prefix final match score normalizes to 1.0.
// Logically, this is a part of charScore, but we have to compute it here because it
// only applies for consecutive matches (k == 1).
sc += consecutiveBonus
}
if k == 0 {
// Penalty 3: Matching inside a segment (and previous char wasn't matched). Penalize for the lack
// of alignment.
if role == RTail || role == RUCTail {
sc -= 3
}
}
if sc > m.scores[i][j][1].val() {
m.scores[i][j][1] = score(sc, k)
}
}
}
}
result := m.scores[len(candidate)][len(m.pattern)][m.bestK(len(candidate), len(m.pattern))].val()
return result
}
// ScoreTable returns the score table computed for the provided candidate. Used only for debugging.
func (m *Matcher) ScoreTable(candidate string) string {
var buf bytes.Buffer
var line1, line2, separator bytes.Buffer
line1.WriteString("\t")
line2.WriteString("\t")
for j := 0; j < len(m.pattern); j++ {
line1.WriteString(fmt.Sprintf("%c\t\t", m.pattern[j]))
separator.WriteString("----------------")
}
buf.WriteString(line1.String())
buf.WriteString("\n")
buf.WriteString(separator.String())
buf.WriteString("\n")
for i := 1; i <= len(candidate); i++ {
line1.Reset()
line2.Reset()
line1.WriteString(fmt.Sprintf("%c\t", candidate[i-1]))
line2.WriteString("\t")
for j := 1; j <= len(m.pattern); j++ {
line1.WriteString(fmt.Sprintf("M%6d(%c)\t", m.scores[i][j][0].val(), dir(m.scores[i][j][0].prevK())))
line2.WriteString(fmt.Sprintf("H%6d(%c)\t", m.scores[i][j][1].val(), dir(m.scores[i][j][1].prevK())))
}
buf.WriteString(line1.String())
buf.WriteString("\n")
buf.WriteString(line2.String())
buf.WriteString("\n")
buf.WriteString(separator.String())
buf.WriteString("\n")
}
return buf.String()
}
func dir(prevK int) rune {
if prevK == 0 {
return 'M'
}
return 'H'
}
func (m *Matcher) poorMatch() bool {
if len(m.pattern) < 2 {
return false
}
i, j := m.lastCandidateLen, len(m.pattern)
k := m.bestK(i, j)
var counter, len int
for i > 0 {
take := (k == 1)
k = m.scores[i][j][k].prevK()
if take {
len++
if k == 0 && len < 3 && m.roles[i-1] == RTail {
// Short match in the middle of a word
counter++
if counter > 1 {
return true
}
}
j--
} else {
len = 0
}
i--
}
return false
}

236
vendor/golang.org/x/tools/internal/lsp/fuzzy/symbol.go generated vendored Normal file
View File

@@ -0,0 +1,236 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzzy
import (
"unicode"
)
// SymbolMatcher implements a fuzzy matching algorithm optimized for Go symbols
// of the form:
// example.com/path/to/package.object.field
//
// Knowing that we are matching symbols like this allows us to make the
// following optimizations:
// - We can incorporate right-to-left relevance directly into the score
// calculation.
// - We can match from right to left, discarding leading bytes if the input is
// too long.
// - We just take the right-most match without losing too much precision. This
// allows us to use an O(n) algorithm.
// - We can operate directly on chunked strings; in many cases we will
// be storing the package path and/or package name separately from the
// symbol or identifiers, so doing this avoids allocating strings.
// - We can return the index of the right-most match, allowing us to trim
// irrelevant qualification.
//
// This implementation is experimental, serving as a reference fast algorithm
// to compare to the fuzzy algorithm implemented by Matcher.
type SymbolMatcher struct {
// Using buffers of length 256 is both a reasonable size for most qualified
// symbols, and makes it easy to avoid bounds checks by using uint8 indexes.
pattern [256]rune
patternLen uint8
inputBuffer [256]rune // avoid allocating when considering chunks
roles [256]uint32 // which roles does a rune play (word start, etc.)
segments [256]uint8 // how many segments from the right is each rune
}
const (
segmentStart uint32 = 1 << iota
wordStart
separator
)
// NewSymbolMatcher creates a SymbolMatcher that may be used to match the given
// search pattern.
//
// Currently this matcher only accepts case-insensitive fuzzy patterns.
//
// An empty pattern matches no input.
func NewSymbolMatcher(pattern string) *SymbolMatcher {
m := &SymbolMatcher{}
for _, p := range pattern {
m.pattern[m.patternLen] = unicode.ToLower(p)
m.patternLen++
if m.patternLen == 255 || int(m.patternLen) == len(pattern) {
// break at 255 so that we can represent patternLen with a uint8.
break
}
}
return m
}
// Match looks for the right-most match of the search pattern within the symbol
// represented by concatenating the given chunks, returning its offset and
// score.
//
// If a match is found, the first return value will hold the absolute byte
// offset within all chunks for the start of the symbol. In other words, the
// index of the match within strings.Join(chunks, ""). If no match is found,
// the first return value will be -1.
//
// The second return value will be the score of the match, which is always
// between 0 and 1, inclusive. A score of 0 indicates no match.
func (m *SymbolMatcher) Match(chunks []string) (int, float64) {
// Explicit behavior for an empty pattern.
//
// As a minor optimization, this also avoids nilness checks later on, since
// the compiler can prove that m != nil.
if m.patternLen == 0 {
return -1, 0
}
// First phase: populate the input buffer with lower-cased runes.
//
// We could also check for a forward match here, but since we'd have to write
// the entire input anyway this has negligible impact on performance.
var (
inputLen = uint8(0)
modifiers = wordStart | segmentStart
)
input:
for _, chunk := range chunks {
for _, r := range chunk {
if r == '.' || r == '/' {
modifiers |= separator
}
// optimization: avoid calls to unicode.ToLower, which can't be inlined.
l := r
if r <= unicode.MaxASCII {
if 'A' <= r && r <= 'Z' {
l = r + 'a' - 'A'
}
} else {
l = unicode.ToLower(r)
}
if l != r {
modifiers |= wordStart
}
m.inputBuffer[inputLen] = l
m.roles[inputLen] = modifiers
inputLen++
if m.roles[inputLen-1]&separator != 0 {
modifiers = wordStart | segmentStart
} else {
modifiers = 0
}
// TODO: we should prefer the right-most input if it overflows, rather
// than the left-most as we're doing here.
if inputLen == 255 {
break input
}
}
}
// Second phase: find the right-most match, and count segments from the
// right.
var (
pi = uint8(m.patternLen - 1) // pattern index
p = m.pattern[pi] // pattern rune
start = -1 // start offset of match
rseg = uint8(0)
)
const maxSeg = 3 // maximum number of segments from the right to count, for scoring purposes.
for ii := inputLen - 1; ; ii-- {
r := m.inputBuffer[ii]
if rseg < maxSeg && m.roles[ii]&separator != 0 {
rseg++
}
m.segments[ii] = rseg
if p == r {
if pi == 0 {
start = int(ii)
break
}
pi--
p = m.pattern[pi]
}
// Don't check ii >= 0 in the loop condition: ii is a uint8.
if ii == 0 {
break
}
}
if start < 0 {
// no match: skip scoring
return -1, 0
}
// Third phase: find the shortest match, and compute the score.
// Score is the average score for each character.
//
// A character score is the multiple of:
// 1. 1.0 if the character starts a segment, .8 if the character start a
// mid-segment word, otherwise 0.6. This carries over to immediately
// following characters.
// 2. For the final character match, the multiplier from (1) is reduced to
// .8 if the next character in the input is a mid-segment word, or 0.6 if
// the next character in the input is not a word or segment start. This
// ensures that we favor whole-word or whole-segment matches over prefix
// matches.
// 3. 1.0 if the character is part of the last segment, otherwise
// 1.0-.2*<segments from the right>, with a max segment count of 3.
//
// This is a very naive algorithm, but it is fast. There's lots of prior art
// here, and we should leverage it. For example, we could explicitly consider
// character distance, and exact matches of words or segments.
//
// Also note that this might not actually find the highest scoring match, as
// doing so could require a non-linear algorithm, depending on how the score
// is calculated.
pi = 0
p = m.pattern[pi]
const (
segStreak = 1.0
wordStreak = 0.8
noStreak = 0.6
perSegment = 0.2 // we count at most 3 segments above
)
streakBonus := noStreak
totScore := 0.0
for ii := uint8(start); ii < inputLen; ii++ {
r := m.inputBuffer[ii]
if r == p {
pi++
p = m.pattern[pi]
// Note: this could be optimized with some bit operations.
switch {
case m.roles[ii]&segmentStart != 0 && segStreak > streakBonus:
streakBonus = segStreak
case m.roles[ii]&wordStart != 0 && wordStreak > streakBonus:
streakBonus = wordStreak
}
finalChar := pi >= m.patternLen
// finalCost := 1.0
if finalChar && streakBonus > noStreak {
switch {
case ii == inputLen-1 || m.roles[ii+1]&segmentStart != 0:
// Full segment: no reduction
case m.roles[ii+1]&wordStart != 0:
streakBonus = wordStreak
default:
streakBonus = noStreak
}
}
totScore += streakBonus * (1.0 - float64(m.segments[ii])*perSegment)
if finalChar {
break
}
} else {
streakBonus = noStreak
}
}
return start, totScore / float64(m.patternLen)
}

View File

@@ -2,24 +2,179 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package typeparams provides functions to work indirectly with type parameter
// data stored in go/ast and go/types objects, while these API are guarded by a
// build constraint.
// Package typeparams contains common utilities for writing tools that interact
// with generic Go code, as introduced with Go 1.18.
//
// This package exists to make it easier for tools to work with generic code,
// while also compiling against older Go versions.
// Many of the types and functions in this package are proxies for the new APIs
// introduced in the standard library with Go 1.18. For example, the
// typeparams.Union type is an alias for go/types.Union, and the ForTypeSpec
// function returns the value of the go/ast.TypeSpec.TypeParams field. At Go
// versions older than 1.18 these helpers are implemented as stubs, allowing
// users of this package to write code that handles generic constructs inline,
// even if the Go version being used to compile does not support generics.
//
// Additionally, this package contains common utilities for working with the
// new generic constructs, to supplement the standard library APIs. Notably,
// the StructuralTerms API computes a minimal representation of the structural
// restrictions on a type parameter. In the future, this API may be available
// from go/types.
//
// See the example/README.md for a more detailed guide on how to update tools
// to support generics.
package typeparams
import (
"go/ast"
"go/token"
"go/types"
)
// A IndexExprData holds data from both ast.IndexExpr and the new
// ast.MultiIndexExpr, which was introduced in Go 1.18.
type IndexExprData struct {
X ast.Expr // expression
Lbrack token.Pos // position of "["
Indices []ast.Expr // index expressions
Rbrack token.Pos // position of "]"
// UnpackIndexExpr extracts data from AST nodes that represent index
// expressions.
//
// For an ast.IndexExpr, the resulting indices slice will contain exactly one
// index expression. For an ast.IndexListExpr (go1.18+), it may have a variable
// number of index expressions.
//
// For nodes that don't represent index expressions, the first return value of
// UnpackIndexExpr will be nil.
func UnpackIndexExpr(n ast.Node) (x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) {
switch e := n.(type) {
case *ast.IndexExpr:
return e.X, e.Lbrack, []ast.Expr{e.Index}, e.Rbrack
case *IndexListExpr:
return e.X, e.Lbrack, e.Indices, e.Rbrack
}
return nil, token.NoPos, nil, token.NoPos
}
// PackIndexExpr returns an *ast.IndexExpr or *ast.IndexListExpr, depending on
// the cardinality of indices. Calling PackIndexExpr with len(indices) == 0
// will panic.
func PackIndexExpr(x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) ast.Expr {
switch len(indices) {
case 0:
panic("empty indices")
case 1:
return &ast.IndexExpr{
X: x,
Lbrack: lbrack,
Index: indices[0],
Rbrack: rbrack,
}
default:
return &IndexListExpr{
X: x,
Lbrack: lbrack,
Indices: indices,
Rbrack: rbrack,
}
}
}
// IsTypeParam reports whether t is a type parameter.
func IsTypeParam(t types.Type) bool {
_, ok := t.(*TypeParam)
return ok
}
// OriginMethod returns the origin method associated with the method fn.
// For methods on a non-generic receiver base type, this is just
// fn. However, for methods with a generic receiver, OriginMethod returns the
// corresponding method in the method set of the origin type.
//
// As a special case, if fn is not a method (has no receiver), OriginMethod
// returns fn.
func OriginMethod(fn *types.Func) *types.Func {
recv := fn.Type().(*types.Signature).Recv()
if recv == nil {
return fn
}
base := recv.Type()
p, isPtr := base.(*types.Pointer)
if isPtr {
base = p.Elem()
}
named, isNamed := base.(*types.Named)
if !isNamed {
// Receiver is a *types.Interface.
return fn
}
if ForNamed(named).Len() == 0 {
// Receiver base has no type parameters, so we can avoid the lookup below.
return fn
}
orig := NamedTypeOrigin(named)
gfn, _, _ := types.LookupFieldOrMethod(orig, true, fn.Pkg(), fn.Name())
return gfn.(*types.Func)
}
// GenericAssignableTo is a generalization of types.AssignableTo that
// implements the following rule for uninstantiated generic types:
//
// If V and T are generic named types, then V is considered assignable to T if,
// for every possible instantation of V[A_1, ..., A_N], the instantiation
// T[A_1, ..., A_N] is valid and V[A_1, ..., A_N] implements T[A_1, ..., A_N].
//
// If T has structural constraints, they must be satisfied by V.
//
// For example, consider the following type declarations:
//
// type Interface[T any] interface {
// Accept(T)
// }
//
// type Container[T any] struct {
// Element T
// }
//
// func (c Container[T]) Accept(t T) { c.Element = t }
//
// In this case, GenericAssignableTo reports that instantiations of Container
// are assignable to the corresponding instantiation of Interface.
func GenericAssignableTo(ctxt *Context, V, T types.Type) bool {
// If V and T are not both named, or do not have matching non-empty type
// parameter lists, fall back on types.AssignableTo.
VN, Vnamed := V.(*types.Named)
TN, Tnamed := T.(*types.Named)
if !Vnamed || !Tnamed {
return types.AssignableTo(V, T)
}
vtparams := ForNamed(VN)
ttparams := ForNamed(TN)
if vtparams.Len() == 0 || vtparams.Len() != ttparams.Len() || NamedTypeArgs(VN).Len() != 0 || NamedTypeArgs(TN).Len() != 0 {
return types.AssignableTo(V, T)
}
// V and T have the same (non-zero) number of type params. Instantiate both
// with the type parameters of V. This must always succeed for V, and will
// succeed for T if and only if the type set of each type parameter of V is a
// subset of the type set of the corresponding type parameter of T, meaning
// that every instantiation of V corresponds to a valid instantiation of T.
// Minor optimization: ensure we share a context across the two
// instantiations below.
if ctxt == nil {
ctxt = NewContext()
}
var targs []types.Type
for i := 0; i < vtparams.Len(); i++ {
targs = append(targs, vtparams.At(i))
}
vinst, err := Instantiate(ctxt, V, targs, true)
if err != nil {
panic("type parameters should satisfy their own constraints")
}
tinst, err := Instantiate(ctxt, T, targs, true)
if err != nil {
return false
}
return types.AssignableTo(vinst, tinst)
}

View File

@@ -0,0 +1,12 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.18
// +build !go1.18
package typeparams
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = false

View File

@@ -0,0 +1,15 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.18
// +build go1.18
package typeparams
// Note: this constant is in a separate file as this is the only acceptable
// diff between the <1.18 API of this package and the 1.18 API.
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = true

View File

@@ -0,0 +1,216 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typeparams
import (
"errors"
"fmt"
"go/types"
"os"
"strings"
)
//go:generate go run copytermlist.go
const debug = false
var ErrEmptyTypeSet = errors.New("empty type set")
// StructuralTerms returns a slice of terms representing the normalized
// structural type restrictions of a type parameter, if any.
//
// Structural type restrictions of a type parameter are created via
// non-interface types embedded in its constraint interface (directly, or via a
// chain of interface embeddings). For example, in the declaration
// type T[P interface{~int; m()}] int
// the structural restriction of the type parameter P is ~int.
//
// With interface embedding and unions, the specification of structural type
// restrictions may be arbitrarily complex. For example, consider the
// following:
//
// type A interface{ ~string|~[]byte }
//
// type B interface{ int|string }
//
// type C interface { ~string|~int }
//
// type T[P interface{ A|B; C }] int
//
// In this example, the structural type restriction of P is ~string|int: A|B
// expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int,
// which when intersected with C (~string|~int) yields ~string|int.
//
// StructuralTerms computes these expansions and reductions, producing a
// "normalized" form of the embeddings. A structural restriction is normalized
// if it is a single union containing no interface terms, and is minimal in the
// sense that removing any term changes the set of types satisfying the
// constraint. It is left as a proof for the reader that, modulo sorting, there
// is exactly one such normalized form.
//
// Because the minimal representation always takes this form, StructuralTerms
// returns a slice of tilde terms corresponding to the terms of the union in
// the normalized structural restriction. An error is returned if the
// constraint interface is invalid, exceeds complexity bounds, or has an empty
// type set. In the latter case, StructuralTerms returns ErrEmptyTypeSet.
//
// StructuralTerms makes no guarantees about the order of terms, except that it
// is deterministic.
func StructuralTerms(tparam *TypeParam) ([]*Term, error) {
constraint := tparam.Constraint()
if constraint == nil {
return nil, fmt.Errorf("%s has nil constraint", tparam)
}
iface, _ := constraint.Underlying().(*types.Interface)
if iface == nil {
return nil, fmt.Errorf("constraint is %T, not *types.Interface", constraint.Underlying())
}
return InterfaceTermSet(iface)
}
// InterfaceTermSet computes the normalized terms for a constraint interface,
// returning an error if the term set cannot be computed or is empty. In the
// latter case, the error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func InterfaceTermSet(iface *types.Interface) ([]*Term, error) {
return computeTermSet(iface)
}
// UnionTermSet computes the normalized terms for a union, returning an error
// if the term set cannot be computed or is empty. In the latter case, the
// error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func UnionTermSet(union *Union) ([]*Term, error) {
return computeTermSet(union)
}
func computeTermSet(typ types.Type) ([]*Term, error) {
tset, err := computeTermSetInternal(typ, make(map[types.Type]*termSet), 0)
if err != nil {
return nil, err
}
if tset.terms.isEmpty() {
return nil, ErrEmptyTypeSet
}
if tset.terms.isAll() {
return nil, nil
}
var terms []*Term
for _, term := range tset.terms {
terms = append(terms, NewTerm(term.tilde, term.typ))
}
return terms, nil
}
// A termSet holds the normalized set of terms for a given type.
//
// The name termSet is intentionally distinct from 'type set': a type set is
// all types that implement a type (and includes method restrictions), whereas
// a term set just represents the structural restrictions on a type.
type termSet struct {
complete bool
terms termlist
}
func indentf(depth int, format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, strings.Repeat(".", depth)+format+"\n", args...)
}
func computeTermSetInternal(t types.Type, seen map[types.Type]*termSet, depth int) (res *termSet, err error) {
if t == nil {
panic("nil type")
}
if debug {
indentf(depth, "%s", t.String())
defer func() {
if err != nil {
indentf(depth, "=> %s", err)
} else {
indentf(depth, "=> %s", res.terms.String())
}
}()
}
const maxTermCount = 100
if tset, ok := seen[t]; ok {
if !tset.complete {
return nil, fmt.Errorf("cycle detected in the declaration of %s", t)
}
return tset, nil
}
// Mark the current type as seen to avoid infinite recursion.
tset := new(termSet)
defer func() {
tset.complete = true
}()
seen[t] = tset
switch u := t.Underlying().(type) {
case *types.Interface:
// The term set of an interface is the intersection of the term sets of its
// embedded types.
tset.terms = allTermlist
for i := 0; i < u.NumEmbeddeds(); i++ {
embedded := u.EmbeddedType(i)
if _, ok := embedded.Underlying().(*TypeParam); ok {
return nil, fmt.Errorf("invalid embedded type %T", embedded)
}
tset2, err := computeTermSetInternal(embedded, seen, depth+1)
if err != nil {
return nil, err
}
tset.terms = tset.terms.intersect(tset2.terms)
}
case *Union:
// The term set of a union is the union of term sets of its terms.
tset.terms = nil
for i := 0; i < u.Len(); i++ {
t := u.Term(i)
var terms termlist
switch t.Type().Underlying().(type) {
case *types.Interface:
tset2, err := computeTermSetInternal(t.Type(), seen, depth+1)
if err != nil {
return nil, err
}
terms = tset2.terms
case *TypeParam, *Union:
// A stand-alone type parameter or union is not permitted as union
// term.
return nil, fmt.Errorf("invalid union term %T", t)
default:
if t.Type() == types.Typ[types.Invalid] {
continue
}
terms = termlist{{t.Tilde(), t.Type()}}
}
tset.terms = tset.terms.union(terms)
if len(tset.terms) > maxTermCount {
return nil, fmt.Errorf("exceeded max term count %d", maxTermCount)
}
}
case *TypeParam:
panic("unreachable")
default:
// For all other types, the term set is just a single non-tilde term
// holding the type itself.
if u != types.Typ[types.Invalid] {
tset.terms = termlist{{false, t}}
}
}
return tset, nil
}
// under is a facade for the go/types internal function of the same name. It is
// used by typeterm.go.
func under(t types.Type) types.Type {
return t.Underlying()
}

View File

@@ -1,93 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !typeparams || !go1.18
// +build !typeparams !go1.18
package typeparams
import (
"go/ast"
"go/types"
)
// NOTE: doc comments must be kept in sync with typeparams.go.
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = false
// GetIndexExprData extracts data from AST nodes that represent index
// expressions.
//
// For an ast.IndexExpr, the resulting IndexExprData will have exactly one
// index expression. For an ast.MultiIndexExpr (go1.18+), it may have a
// variable number of index expressions.
//
// For nodes that don't represent index expressions, GetIndexExprData returns
// nil.
func GetIndexExprData(n ast.Node) *IndexExprData {
if e, _ := n.(*ast.IndexExpr); e != nil {
return &IndexExprData{
X: e.X,
Lbrack: e.Lbrack,
Indices: []ast.Expr{e.Index},
Rbrack: e.Rbrack,
}
}
return nil
}
// ForTypeDecl extracts the (possibly nil) type parameter node list from n.
func ForTypeDecl(*ast.TypeSpec) *ast.FieldList {
return nil
}
// ForFuncDecl extracts the (possibly nil) type parameter node list from n.
func ForFuncDecl(*ast.FuncDecl) *ast.FieldList {
return nil
}
// ForSignature extracts the (possibly empty) type parameter object list from
// sig.
func ForSignature(*types.Signature) []*types.TypeName {
return nil
}
// IsComparable reports if iface is the comparable interface.
func IsComparable(*types.Interface) bool {
return false
}
// IsConstraint reports whether iface may only be used as a type parameter
// constraint (i.e. has a type set or is the comparable interface).
func IsConstraint(*types.Interface) bool {
return false
}
// ForNamed extracts the (possibly empty) type parameter object list from
// named.
func ForNamed(*types.Named) []*types.TypeName {
return nil
}
// NamedTArgs extracts the (possibly empty) type argument list from named.
func NamedTArgs(*types.Named) []types.Type {
return nil
}
// InitInferred initializes info to record inferred type information.
func InitInferred(*types.Info) {
}
// GetInferred extracts inferred type information from info for e.
//
// The expression e may have an inferred type if it is an *ast.IndexExpr
// representing partial instantiation of a generic function type for which type
// arguments have been inferred using constraint type inference, or if it is an
// *ast.CallExpr for which type type arguments have be inferred using both
// constraint type inference and function argument inference.
func GetInferred(*types.Info, ast.Expr) ([]types.Type, *types.Signature) {
return nil, nil
}

View File

@@ -0,0 +1,172 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import (
"bytes"
"go/types"
)
// A termlist represents the type set represented by the union
// t1 y2 ... tn of the type sets of the terms t1 to tn.
// A termlist is in normal form if all terms are disjoint.
// termlist operations don't require the operands to be in
// normal form.
type termlist []*term
// allTermlist represents the set of all types.
// It is in normal form.
var allTermlist = termlist{new(term)}
// String prints the termlist exactly (without normalization).
func (xl termlist) String() string {
if len(xl) == 0 {
return "∅"
}
var buf bytes.Buffer
for i, x := range xl {
if i > 0 {
buf.WriteString(" ")
}
buf.WriteString(x.String())
}
return buf.String()
}
// isEmpty reports whether the termlist xl represents the empty set of types.
func (xl termlist) isEmpty() bool {
// If there's a non-nil term, the entire list is not empty.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil {
return false
}
}
return true
}
// isAll reports whether the termlist xl represents the set of all types.
func (xl termlist) isAll() bool {
// If there's a 𝓤 term, the entire list is 𝓤.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil && x.typ == nil {
return true
}
}
return false
}
// norm returns the normal form of xl.
func (xl termlist) norm() termlist {
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
used := make([]bool, len(xl))
var rl termlist
for i, xi := range xl {
if xi == nil || used[i] {
continue
}
for j := i + 1; j < len(xl); j++ {
xj := xl[j]
if xj == nil || used[j] {
continue
}
if u1, u2 := xi.union(xj); u2 == nil {
// If we encounter a 𝓤 term, the entire list is 𝓤.
// Exit early.
// (Note that this is not just an optimization;
// if we continue, we may end up with a 𝓤 term
// and other terms and the result would not be
// in normal form.)
if u1.typ == nil {
return allTermlist
}
xi = u1
used[j] = true // xj is now unioned into xi - ignore it in future iterations
}
}
rl = append(rl, xi)
}
return rl
}
// If the type set represented by xl is specified by a single (non-𝓤) term,
// structuralType returns that type. Otherwise it returns nil.
func (xl termlist) structuralType() types.Type {
if nl := xl.norm(); len(nl) == 1 {
return nl[0].typ // if nl.isAll() then typ is nil, which is ok
}
return nil
}
// union returns the union xl yl.
func (xl termlist) union(yl termlist) termlist {
return append(xl, yl...).norm()
}
// intersect returns the intersection xl ∩ yl.
func (xl termlist) intersect(yl termlist) termlist {
if xl.isEmpty() || yl.isEmpty() {
return nil
}
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
var rl termlist
for _, x := range xl {
for _, y := range yl {
if r := x.intersect(y); r != nil {
rl = append(rl, r)
}
}
}
return rl.norm()
}
// equal reports whether xl and yl represent the same type set.
func (xl termlist) equal(yl termlist) bool {
// TODO(gri) this should be more efficient
return xl.subsetOf(yl) && yl.subsetOf(xl)
}
// includes reports whether t ∈ xl.
func (xl termlist) includes(t types.Type) bool {
for _, x := range xl {
if x.includes(t) {
return true
}
}
return false
}
// supersetOf reports whether y ⊆ xl.
func (xl termlist) supersetOf(y *term) bool {
for _, x := range xl {
if y.subsetOf(x) {
return true
}
}
return false
}
// subsetOf reports whether xl ⊆ yl.
func (xl termlist) subsetOf(yl termlist) bool {
if yl.isEmpty() {
return xl.isEmpty()
}
// each term x of xl must be a subset of yl
for _, x := range xl {
if !yl.supersetOf(x) {
return false // x is not a subset yl
}
}
return true
}

View File

@@ -1,125 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build typeparams && go1.18
// +build typeparams,go1.18
package typeparams
import (
"go/ast"
"go/types"
)
// NOTE: doc comments must be kept in sync with notypeparams.go.
// Enabled reports whether type parameters are enabled in the current build
// environment.
const Enabled = true
// GetIndexExprData extracts data from AST nodes that represent index
// expressions.
//
// For an ast.IndexExpr, the resulting IndexExprData will have exactly one
// index expression. For an ast.MultiIndexExpr (go1.18+), it may have a
// variable number of index expressions.
//
// For nodes that don't represent index expressions, GetIndexExprData returns
// nil.
func GetIndexExprData(n ast.Node) *IndexExprData {
switch e := n.(type) {
case *ast.IndexExpr:
return &IndexExprData{
X: e.X,
Lbrack: e.Lbrack,
Indices: []ast.Expr{e.Index},
Rbrack: e.Rbrack,
}
case *ast.MultiIndexExpr:
return (*IndexExprData)(e)
}
return nil
}
// ForTypeDecl extracts the (possibly nil) type parameter node list from n.
func ForTypeDecl(n *ast.TypeSpec) *ast.FieldList {
return n.TParams
}
// ForFuncDecl extracts the (possibly nil) type parameter node list from n.
func ForFuncDecl(n *ast.FuncDecl) *ast.FieldList {
if n.Type != nil {
return n.Type.TParams
}
return nil
}
// ForSignature extracts the (possibly empty) type parameter object list from
// sig.
func ForSignature(sig *types.Signature) []*types.TypeName {
return tparamsSlice(sig.TParams())
}
// IsComparable reports if iface is the comparable interface.
func IsComparable(iface *types.Interface) bool {
return iface.IsComparable()
}
// IsConstraint reports whether iface may only be used as a type parameter
// constraint (i.e. has a type set or is the comparable interface).
func IsConstraint(iface *types.Interface) bool {
return iface.IsConstraint()
}
// ForNamed extracts the (possibly empty) type parameter object list from
// named.
func ForNamed(named *types.Named) []*types.TypeName {
return tparamsSlice(named.TParams())
}
func tparamsSlice(tparams *types.TypeParams) []*types.TypeName {
if tparams.Len() == 0 {
return nil
}
result := make([]*types.TypeName, tparams.Len())
for i := 0; i < tparams.Len(); i++ {
result[i] = tparams.At(i)
}
return result
}
// NamedTArgs extracts the (possibly empty) type argument list from named.
func NamedTArgs(named *types.Named) []types.Type {
ntargs := named.NumTArgs()
if ntargs == 0 {
return nil
}
targs := make([]types.Type, ntargs)
for i := 0; i < ntargs; i++ {
targs[i] = named.TArg(i)
}
return targs
}
// InitInferred initializes info to record inferred type information.
func InitInferred(info *types.Info) {
info.Inferred = make(map[ast.Expr]types.Inferred)
}
// GetInferred extracts inferred type information from info for e.
//
// The expression e may have an inferred type if it is an *ast.IndexExpr
// representing partial instantiation of a generic function type for which type
// arguments have been inferred using constraint type inference, or if it is an
// *ast.CallExpr for which type type arguments have be inferred using both
// constraint type inference and function argument inference.
func GetInferred(info *types.Info, e ast.Expr) ([]types.Type, *types.Signature) {
if info.Inferred == nil {
return nil, nil
}
inf := info.Inferred[e]
return inf.TArgs, inf.Sig
}

View File

@@ -0,0 +1,197 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.18
// +build !go1.18
package typeparams
import (
"go/ast"
"go/token"
"go/types"
)
func unsupported() {
panic("type parameters are unsupported at this go version")
}
// IndexListExpr is a placeholder type, as type parameters are not supported at
// this Go version. Its methods panic on use.
type IndexListExpr struct {
ast.Expr
X ast.Expr // expression
Lbrack token.Pos // position of "["
Indices []ast.Expr // index expressions
Rbrack token.Pos // position of "]"
}
// ForTypeSpec returns an empty field list, as type parameters on not supported
// at this Go version.
func ForTypeSpec(*ast.TypeSpec) *ast.FieldList {
return nil
}
// ForFuncType returns an empty field list, as type parameters are not
// supported at this Go version.
func ForFuncType(*ast.FuncType) *ast.FieldList {
return nil
}
// TypeParam is a placeholder type, as type parameters are not supported at
// this Go version. Its methods panic on use.
type TypeParam struct{ types.Type }
func (*TypeParam) Index() int { unsupported(); return 0 }
func (*TypeParam) Constraint() types.Type { unsupported(); return nil }
func (*TypeParam) Obj() *types.TypeName { unsupported(); return nil }
// TypeParamList is a placeholder for an empty type parameter list.
type TypeParamList struct{}
func (*TypeParamList) Len() int { return 0 }
func (*TypeParamList) At(int) *TypeParam { unsupported(); return nil }
// TypeList is a placeholder for an empty type list.
type TypeList struct{}
func (*TypeList) Len() int { return 0 }
func (*TypeList) At(int) types.Type { unsupported(); return nil }
// NewTypeParam is unsupported at this Go version, and panics.
func NewTypeParam(name *types.TypeName, constraint types.Type) *TypeParam {
unsupported()
return nil
}
// SetTypeParamConstraint is unsupported at this Go version, and panics.
func SetTypeParamConstraint(tparam *TypeParam, constraint types.Type) {
unsupported()
}
// NewSignatureType calls types.NewSignature, panicking if recvTypeParams or
// typeParams is non-empty.
func NewSignatureType(recv *types.Var, recvTypeParams, typeParams []*TypeParam, params, results *types.Tuple, variadic bool) *types.Signature {
if len(recvTypeParams) != 0 || len(typeParams) != 0 {
panic("signatures cannot have type parameters at this Go version")
}
return types.NewSignature(recv, params, results, variadic)
}
// ForSignature returns an empty slice.
func ForSignature(*types.Signature) *TypeParamList {
return nil
}
// RecvTypeParams returns a nil slice.
func RecvTypeParams(sig *types.Signature) *TypeParamList {
return nil
}
// IsComparable returns false, as no interfaces are type-restricted at this Go
// version.
func IsComparable(*types.Interface) bool {
return false
}
// IsMethodSet returns true, as no interfaces are type-restricted at this Go
// version.
func IsMethodSet(*types.Interface) bool {
return true
}
// IsImplicit returns false, as no interfaces are implicit at this Go version.
func IsImplicit(*types.Interface) bool {
return false
}
// MarkImplicit does nothing, because this Go version does not have implicit
// interfaces.
func MarkImplicit(*types.Interface) {}
// ForNamed returns an empty type parameter list, as type parameters are not
// supported at this Go version.
func ForNamed(*types.Named) *TypeParamList {
return nil
}
// SetForNamed panics if tparams is non-empty.
func SetForNamed(_ *types.Named, tparams []*TypeParam) {
if len(tparams) > 0 {
unsupported()
}
}
// NamedTypeArgs returns nil.
func NamedTypeArgs(*types.Named) *TypeList {
return nil
}
// NamedTypeOrigin is the identity method at this Go version.
func NamedTypeOrigin(named *types.Named) types.Type {
return named
}
// Term holds information about a structural type restriction.
type Term struct {
tilde bool
typ types.Type
}
func (m *Term) Tilde() bool { return m.tilde }
func (m *Term) Type() types.Type { return m.typ }
func (m *Term) String() string {
pre := ""
if m.tilde {
pre = "~"
}
return pre + m.typ.String()
}
// NewTerm is unsupported at this Go version, and panics.
func NewTerm(tilde bool, typ types.Type) *Term {
return &Term{tilde, typ}
}
// Union is a placeholder type, as type parameters are not supported at this Go
// version. Its methods panic on use.
type Union struct{ types.Type }
func (*Union) Len() int { return 0 }
func (*Union) Term(i int) *Term { unsupported(); return nil }
// NewUnion is unsupported at this Go version, and panics.
func NewUnion(terms []*Term) *Union {
unsupported()
return nil
}
// InitInstanceInfo is a noop at this Go version.
func InitInstanceInfo(*types.Info) {}
// Instance is a placeholder type, as type parameters are not supported at this
// Go version.
type Instance struct {
TypeArgs *TypeList
Type types.Type
}
// GetInstances returns a nil map, as type parameters are not supported at this
// Go version.
func GetInstances(info *types.Info) map[*ast.Ident]Instance { return nil }
// Context is a placeholder type, as type parameters are not supported at
// this Go version.
type Context struct{}
// NewContext returns a placeholder Context instance.
func NewContext() *Context {
return &Context{}
}
// Instantiate is unsupported on this Go version, and panics.
func Instantiate(ctxt *Context, typ types.Type, targs []types.Type, validate bool) (types.Type, error) {
unsupported()
return nil, nil
}

View File

@@ -0,0 +1,151 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.18
// +build go1.18
package typeparams
import (
"go/ast"
"go/types"
)
// IndexListExpr is an alias for ast.IndexListExpr.
type IndexListExpr = ast.IndexListExpr
// ForTypeSpec returns n.TypeParams.
func ForTypeSpec(n *ast.TypeSpec) *ast.FieldList {
if n == nil {
return nil
}
return n.TypeParams
}
// ForFuncType returns n.TypeParams.
func ForFuncType(n *ast.FuncType) *ast.FieldList {
if n == nil {
return nil
}
return n.TypeParams
}
// TypeParam is an alias for types.TypeParam
type TypeParam = types.TypeParam
// TypeParamList is an alias for types.TypeParamList
type TypeParamList = types.TypeParamList
// TypeList is an alias for types.TypeList
type TypeList = types.TypeList
// NewTypeParam calls types.NewTypeParam.
func NewTypeParam(name *types.TypeName, constraint types.Type) *TypeParam {
return types.NewTypeParam(name, constraint)
}
// SetTypeParamConstraint calls tparam.SetConstraint(constraint).
func SetTypeParamConstraint(tparam *TypeParam, constraint types.Type) {
tparam.SetConstraint(constraint)
}
// NewSignatureType calls types.NewSignatureType.
func NewSignatureType(recv *types.Var, recvTypeParams, typeParams []*TypeParam, params, results *types.Tuple, variadic bool) *types.Signature {
return types.NewSignatureType(recv, recvTypeParams, typeParams, params, results, variadic)
}
// ForSignature returns sig.TypeParams()
func ForSignature(sig *types.Signature) *TypeParamList {
return sig.TypeParams()
}
// RecvTypeParams returns sig.RecvTypeParams().
func RecvTypeParams(sig *types.Signature) *TypeParamList {
return sig.RecvTypeParams()
}
// IsComparable calls iface.IsComparable().
func IsComparable(iface *types.Interface) bool {
return iface.IsComparable()
}
// IsMethodSet calls iface.IsMethodSet().
func IsMethodSet(iface *types.Interface) bool {
return iface.IsMethodSet()
}
// IsImplicit calls iface.IsImplicit().
func IsImplicit(iface *types.Interface) bool {
return iface.IsImplicit()
}
// MarkImplicit calls iface.MarkImplicit().
func MarkImplicit(iface *types.Interface) {
iface.MarkImplicit()
}
// ForNamed extracts the (possibly empty) type parameter object list from
// named.
func ForNamed(named *types.Named) *TypeParamList {
return named.TypeParams()
}
// SetForNamed sets the type params tparams on n. Each tparam must be of
// dynamic type *types.TypeParam.
func SetForNamed(n *types.Named, tparams []*TypeParam) {
n.SetTypeParams(tparams)
}
// NamedTypeArgs returns named.TypeArgs().
func NamedTypeArgs(named *types.Named) *TypeList {
return named.TypeArgs()
}
// NamedTypeOrigin returns named.Orig().
func NamedTypeOrigin(named *types.Named) types.Type {
return named.Origin()
}
// Term is an alias for types.Term.
type Term = types.Term
// NewTerm calls types.NewTerm.
func NewTerm(tilde bool, typ types.Type) *Term {
return types.NewTerm(tilde, typ)
}
// Union is an alias for types.Union
type Union = types.Union
// NewUnion calls types.NewUnion.
func NewUnion(terms []*Term) *Union {
return types.NewUnion(terms)
}
// InitInstanceInfo initializes info to record information about type and
// function instances.
func InitInstanceInfo(info *types.Info) {
info.Instances = make(map[*ast.Ident]types.Instance)
}
// Instance is an alias for types.Instance.
type Instance = types.Instance
// GetInstances returns info.Instances.
func GetInstances(info *types.Info) map[*ast.Ident]Instance {
return info.Instances
}
// Context is an alias for types.Context.
type Context = types.Context
// NewContext calls types.NewContext.
func NewContext() *Context {
return types.NewContext()
}
// Instantiate calls types.Instantiate.
func Instantiate(ctxt *Context, typ types.Type, targs []types.Type, validate bool) (types.Type, error) {
return types.Instantiate(ctxt, typ, targs, validate)
}

View File

@@ -0,0 +1,170 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import "go/types"
// A term describes elementary type sets:
//
// ∅: (*term)(nil) == ∅ // set of no types (empty set)
// 𝓤: &term{} == 𝓤 // set of all types (𝓤niverse)
// T: &term{false, T} == {T} // set of type T
// ~t: &term{true, t} == {t' | under(t') == t} // set of types with underlying type t
//
type term struct {
tilde bool // valid if typ != nil
typ types.Type
}
func (x *term) String() string {
switch {
case x == nil:
return "∅"
case x.typ == nil:
return "𝓤"
case x.tilde:
return "~" + x.typ.String()
default:
return x.typ.String()
}
}
// equal reports whether x and y represent the same type set.
func (x *term) equal(y *term) bool {
// easy cases
switch {
case x == nil || y == nil:
return x == y
case x.typ == nil || y.typ == nil:
return x.typ == y.typ
}
// ∅ ⊂ x, y ⊂ 𝓤
return x.tilde == y.tilde && types.Identical(x.typ, y.typ)
}
// union returns the union x y: zero, one, or two non-nil terms.
func (x *term) union(y *term) (_, _ *term) {
// easy cases
switch {
case x == nil && y == nil:
return nil, nil // ∅ ∅ == ∅
case x == nil:
return y, nil // ∅ y == y
case y == nil:
return x, nil // x ∅ == x
case x.typ == nil:
return x, nil // 𝓤 y == 𝓤
case y.typ == nil:
return y, nil // x 𝓤 == 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return x, y // x y == (x, y) if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ~t == ~t
// ~t T == ~t
// T ~t == ~t
// T T == T
if x.tilde || !y.tilde {
return x, nil
}
return y, nil
}
// intersect returns the intersection x ∩ y.
func (x *term) intersect(y *term) *term {
// easy cases
switch {
case x == nil || y == nil:
return nil // ∅ ∩ y == ∅ and ∩ ∅ == ∅
case x.typ == nil:
return y // 𝓤 ∩ y == y
case y.typ == nil:
return x // x ∩ 𝓤 == x
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return nil // x ∩ y == ∅ if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ∩ ~t == ~t
// ~t ∩ T == T
// T ∩ ~t == T
// T ∩ T == T
if !x.tilde || y.tilde {
return x
}
return y
}
// includes reports whether t ∈ x.
func (x *term) includes(t types.Type) bool {
// easy cases
switch {
case x == nil:
return false // t ∈ ∅ == false
case x.typ == nil:
return true // t ∈ 𝓤 == true
}
// ∅ ⊂ x ⊂ 𝓤
u := t
if x.tilde {
u = under(u)
}
return types.Identical(x.typ, u)
}
// subsetOf reports whether x ⊆ y.
func (x *term) subsetOf(y *term) bool {
// easy cases
switch {
case x == nil:
return true // ∅ ⊆ y == true
case y == nil:
return false // x ⊆ ∅ == false since x != ∅
case y.typ == nil:
return true // x ⊆ 𝓤 == true
case x.typ == nil:
return false // 𝓤 ⊆ y == false since y != 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return false // x ⊆ y == false if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ⊆ ~t == true
// ~t ⊆ T == false
// T ⊆ ~t == true
// T ⊆ T == true
return !x.tilde || y.tilde
}
// disjoint reports whether x ∩ y == ∅.
// x.typ and y.typ must not be nil.
func (x *term) disjoint(y *term) bool {
if debug && (x.typ == nil || y.typ == nil) {
panic("invalid argument(s)")
}
ux := x.typ
if y.tilde {
ux = under(ux)
}
uy := y.typ
if x.tilde {
uy = under(uy)
}
return !types.Identical(ux, uy)
}

View File

@@ -1365,4 +1365,162 @@ const (
// return i
// }
InvalidGo
// All codes below were added in Go 1.17.
/* decl */
// BadDecl occurs when a declaration has invalid syntax.
BadDecl
// RepeatedDecl occurs when an identifier occurs more than once on the left
// hand side of a short variable declaration.
//
// Example:
// func _() {
// x, y, y := 1, 2, 3
// }
RepeatedDecl
/* unsafe */
// InvalidUnsafeAdd occurs when unsafe.Add is called with a
// length argument that is not of integer type.
//
// Example:
// import "unsafe"
//
// var p unsafe.Pointer
// var _ = unsafe.Add(p, float64(1))
InvalidUnsafeAdd
// InvalidUnsafeSlice occurs when unsafe.Slice is called with a
// pointer argument that is not of pointer type or a length argument
// that is not of integer type, negative, or out of bounds.
//
// Example:
// import "unsafe"
//
// var x int
// var _ = unsafe.Slice(x, 1)
//
// Example:
// import "unsafe"
//
// var x int
// var _ = unsafe.Slice(&x, float64(1))
//
// Example:
// import "unsafe"
//
// var x int
// var _ = unsafe.Slice(&x, -1)
//
// Example:
// import "unsafe"
//
// var x int
// var _ = unsafe.Slice(&x, uint64(1) << 63)
InvalidUnsafeSlice
// All codes below were added in Go 1.18.
/* features */
// UnsupportedFeature occurs when a language feature is used that is not
// supported at this Go version.
UnsupportedFeature
/* type params */
// NotAGenericType occurs when a non-generic type is used where a generic
// type is expected: in type or function instantiation.
//
// Example:
// type T int
//
// var _ T[int]
NotAGenericType
// WrongTypeArgCount occurs when a type or function is instantiated with an
// incorrent number of type arguments, including when a generic type or
// function is used without instantiation.
//
// Errors inolving failed type inference are assigned other error codes.
//
// Example:
// type T[p any] int
//
// var _ T[int, string]
//
// Example:
// func f[T any]() {}
//
// var x = f
WrongTypeArgCount
// CannotInferTypeArgs occurs when type or function type argument inference
// fails to infer all type arguments.
//
// Example:
// func f[T any]() {}
//
// func _() {
// f()
// }
//
// Example:
// type N[P, Q any] struct{}
//
// var _ N[int]
CannotInferTypeArgs
// InvalidTypeArg occurs when a type argument does not satisfy its
// corresponding type parameter constraints.
//
// Example:
// type T[P ~int] struct{}
//
// var _ T[string]
InvalidTypeArg // arguments? InferenceFailed
// InvalidInstanceCycle occurs when an invalid cycle is detected
// within the instantiation graph.
//
// Example:
// func f[T any]() { f[*T]() }
InvalidInstanceCycle
// InvalidUnion occurs when an embedded union or approximation element is
// not valid.
//
// Example:
// type _ interface {
// ~int | interface{ m() }
// }
InvalidUnion
// MisplacedConstraintIface occurs when a constraint-type interface is used
// outside of constraint position.
//
// Example:
// type I interface { ~int }
//
// var _ I
MisplacedConstraintIface
// InvalidMethodTypeParams occurs when methods have type parameters.
//
// It cannot be encountered with an AST parsed using go/parser.
InvalidMethodTypeParams
// MisplacedTypeParam occurs when a type parameter is used in a place where
// it is not permitted.
//
// Example:
// type T[P any] P
//
// Example:
// type T[P any] struct{ *P }
MisplacedTypeParam
)

View File

@@ -138,11 +138,25 @@ func _() {
_ = x[UnusedResults-128]
_ = x[InvalidDefer-129]
_ = x[InvalidGo-130]
_ = x[BadDecl-131]
_ = x[RepeatedDecl-132]
_ = x[InvalidUnsafeAdd-133]
_ = x[InvalidUnsafeSlice-134]
_ = x[UnsupportedFeature-135]
_ = x[NotAGenericType-136]
_ = x[WrongTypeArgCount-137]
_ = x[CannotInferTypeArgs-138]
_ = x[InvalidTypeArg-139]
_ = x[InvalidInstanceCycle-140]
_ = x[InvalidUnion-141]
_ = x[MisplacedConstraintIface-142]
_ = x[InvalidMethodTypeParams-143]
_ = x[MisplacedTypeParam-144]
}
const _ErrorCode_name = "TestBlankPkgNameMismatchedPkgNameInvalidPkgUseBadImportPathBrokenImportImportCRenamedUnusedImportInvalidInitCycleDuplicateDeclInvalidDeclCycleInvalidTypeCycleInvalidConstInitInvalidConstValInvalidConstTypeUntypedNilWrongAssignCountUnassignableOperandNoNewVarMultiValAssignOpInvalidIfaceAssignInvalidChanAssignIncompatibleAssignUnaddressableFieldAssignNotATypeInvalidArrayLenBlankIfaceMethodIncomparableMapKeyInvalidIfaceEmbedInvalidPtrEmbedBadRecvInvalidRecvDuplicateFieldAndMethodDuplicateMethodInvalidBlankInvalidIotaMissingInitBodyInvalidInitSigInvalidInitDeclInvalidMainDeclTooManyValuesNotAnExprTruncatedFloatNumericOverflowUndefinedOpMismatchedTypesDivByZeroNonNumericIncDecUnaddressableOperandInvalidIndirectionNonIndexableOperandInvalidIndexSwappedSliceIndicesNonSliceableOperandInvalidSliceExprInvalidShiftCountInvalidShiftOperandInvalidReceiveInvalidSendDuplicateLitKeyMissingLitKeyInvalidLitIndexOversizeArrayLitMixedStructLitInvalidStructLitMissingLitFieldDuplicateLitFieldUnexportedLitFieldInvalidLitFieldUntypedLitInvalidLitAmbiguousSelectorUndeclaredImportedNameUnexportedNameUndeclaredNameMissingFieldOrMethodBadDotDotDotSyntaxNonVariadicDotDotDotMisplacedDotDotDotInvalidDotDotDotOperandInvalidDotDotDotUncalledBuiltinInvalidAppendInvalidCapInvalidCloseInvalidCopyInvalidComplexInvalidDeleteInvalidImagInvalidLenSwappedMakeArgsInvalidMakeInvalidRealInvalidAssertImpossibleAssertInvalidConversionInvalidUntypedConversionBadOffsetofSyntaxInvalidOffsetofUnusedExprUnusedVarMissingReturnWrongResultCountOutOfScopeResultInvalidCondInvalidPostDeclInvalidChanRangeInvalidIterVarInvalidRangeExprMisplacedBreakMisplacedContinueMisplacedFallthroughDuplicateCaseDuplicateDefaultBadTypeKeywordInvalidTypeSwitchInvalidExprSwitchInvalidSelectCaseUndeclaredLabelDuplicateLabelMisplacedLabelUnusedLabelJumpOverDeclJumpIntoBlockInvalidMethodExprWrongArgCountInvalidCallUnusedResultsInvalidDeferInvalidGo"
const _ErrorCode_name = "TestBlankPkgNameMismatchedPkgNameInvalidPkgUseBadImportPathBrokenImportImportCRenamedUnusedImportInvalidInitCycleDuplicateDeclInvalidDeclCycleInvalidTypeCycleInvalidConstInitInvalidConstValInvalidConstTypeUntypedNilWrongAssignCountUnassignableOperandNoNewVarMultiValAssignOpInvalidIfaceAssignInvalidChanAssignIncompatibleAssignUnaddressableFieldAssignNotATypeInvalidArrayLenBlankIfaceMethodIncomparableMapKeyInvalidIfaceEmbedInvalidPtrEmbedBadRecvInvalidRecvDuplicateFieldAndMethodDuplicateMethodInvalidBlankInvalidIotaMissingInitBodyInvalidInitSigInvalidInitDeclInvalidMainDeclTooManyValuesNotAnExprTruncatedFloatNumericOverflowUndefinedOpMismatchedTypesDivByZeroNonNumericIncDecUnaddressableOperandInvalidIndirectionNonIndexableOperandInvalidIndexSwappedSliceIndicesNonSliceableOperandInvalidSliceExprInvalidShiftCountInvalidShiftOperandInvalidReceiveInvalidSendDuplicateLitKeyMissingLitKeyInvalidLitIndexOversizeArrayLitMixedStructLitInvalidStructLitMissingLitFieldDuplicateLitFieldUnexportedLitFieldInvalidLitFieldUntypedLitInvalidLitAmbiguousSelectorUndeclaredImportedNameUnexportedNameUndeclaredNameMissingFieldOrMethodBadDotDotDotSyntaxNonVariadicDotDotDotMisplacedDotDotDotInvalidDotDotDotOperandInvalidDotDotDotUncalledBuiltinInvalidAppendInvalidCapInvalidCloseInvalidCopyInvalidComplexInvalidDeleteInvalidImagInvalidLenSwappedMakeArgsInvalidMakeInvalidRealInvalidAssertImpossibleAssertInvalidConversionInvalidUntypedConversionBadOffsetofSyntaxInvalidOffsetofUnusedExprUnusedVarMissingReturnWrongResultCountOutOfScopeResultInvalidCondInvalidPostDeclInvalidChanRangeInvalidIterVarInvalidRangeExprMisplacedBreakMisplacedContinueMisplacedFallthroughDuplicateCaseDuplicateDefaultBadTypeKeywordInvalidTypeSwitchInvalidExprSwitchInvalidSelectCaseUndeclaredLabelDuplicateLabelMisplacedLabelUnusedLabelJumpOverDeclJumpIntoBlockInvalidMethodExprWrongArgCountInvalidCallUnusedResultsInvalidDeferInvalidGoBadDeclRepeatedDeclInvalidUnsafeAddInvalidUnsafeSliceUnsupportedFeatureNotAGenericTypeWrongTypeArgCountCannotInferTypeArgsInvalidTypeArgInvalidInstanceCycleInvalidUnionMisplacedConstraintIfaceInvalidMethodTypeParamsMisplacedTypeParam"
var _ErrorCode_index = [...]uint16{0, 4, 16, 33, 46, 59, 71, 85, 97, 113, 126, 142, 158, 174, 189, 205, 215, 231, 250, 258, 274, 292, 309, 327, 351, 359, 374, 390, 408, 425, 440, 447, 458, 481, 496, 508, 519, 534, 548, 563, 578, 591, 600, 614, 629, 640, 655, 664, 680, 700, 718, 737, 749, 768, 787, 803, 820, 839, 853, 864, 879, 892, 907, 923, 937, 953, 968, 985, 1003, 1018, 1028, 1038, 1055, 1077, 1091, 1105, 1125, 1143, 1163, 1181, 1204, 1220, 1235, 1248, 1258, 1270, 1281, 1295, 1308, 1319, 1329, 1344, 1355, 1366, 1379, 1395, 1412, 1436, 1453, 1468, 1478, 1487, 1500, 1516, 1532, 1543, 1558, 1574, 1588, 1604, 1618, 1635, 1655, 1668, 1684, 1698, 1715, 1732, 1749, 1764, 1778, 1792, 1803, 1815, 1828, 1845, 1858, 1869, 1882, 1894, 1903}
var _ErrorCode_index = [...]uint16{0, 4, 16, 33, 46, 59, 71, 85, 97, 113, 126, 142, 158, 174, 189, 205, 215, 231, 250, 258, 274, 292, 309, 327, 351, 359, 374, 390, 408, 425, 440, 447, 458, 481, 496, 508, 519, 534, 548, 563, 578, 591, 600, 614, 629, 640, 655, 664, 680, 700, 718, 737, 749, 768, 787, 803, 820, 839, 853, 864, 879, 892, 907, 923, 937, 953, 968, 985, 1003, 1018, 1028, 1038, 1055, 1077, 1091, 1105, 1125, 1143, 1163, 1181, 1204, 1220, 1235, 1248, 1258, 1270, 1281, 1295, 1308, 1319, 1329, 1344, 1355, 1366, 1379, 1395, 1412, 1436, 1453, 1468, 1478, 1487, 1500, 1516, 1532, 1543, 1558, 1574, 1588, 1604, 1618, 1635, 1655, 1668, 1684, 1698, 1715, 1732, 1749, 1764, 1778, 1792, 1803, 1815, 1828, 1845, 1858, 1869, 1882, 1894, 1903, 1910, 1922, 1938, 1956, 1974, 1989, 2006, 2025, 2039, 2059, 2071, 2095, 2118, 2136}
func (i ErrorCode) String() string {
i -= 1

View File

@@ -30,10 +30,15 @@ func SetUsesCgo(conf *types.Config) bool {
return true
}
func ReadGo116ErrorData(terr types.Error) (ErrorCode, token.Pos, token.Pos, bool) {
// ReadGo116ErrorData extracts additional information from types.Error values
// generated by Go version 1.16 and later: the error code, start position, and
// end position. If all positions are valid, start <= err.Pos <= end.
//
// If the data could not be read, the final result parameter will be false.
func ReadGo116ErrorData(err types.Error) (code ErrorCode, start, end token.Pos, ok bool) {
var data [3]int
// By coincidence all of these fields are ints, which simplifies things.
v := reflect.ValueOf(terr)
v := reflect.ValueOf(err)
for i, name := range []string{"go116code", "go116start", "go116end"} {
f := v.FieldByName(name)
if !f.IsValid() {
@@ -43,3 +48,5 @@ func ReadGo116ErrorData(terr types.Error) (ErrorCode, token.Pos, token.Pos, bool
}
return ErrorCode(data[0]), token.Pos(data[1]), token.Pos(data[2]), true
}
var SetGoVersion = func(conf *types.Config, version string) bool { return false }

View File

@@ -0,0 +1,19 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.18
// +build go1.18
package typesinternal
import (
"go/types"
)
func init() {
SetGoVersion = func(conf *types.Config, version string) bool {
conf.GoVersion = version
return true
}
}