from __future__ import annotations import os from collections.abc import Sequence from speech_recognition import PortableNamedTemporaryFile from speech_recognition.audio import AudioData from speech_recognition.exceptions import RequestError, UnknownValueError AcousticParametersDirectoryPath = str LanguageModelFilePath = str PhonemeDictionaryFilePath = str SphinxDataFilePaths = tuple[AcousticParametersDirectoryPath, LanguageModelFilePath, PhonemeDictionaryFilePath] Keyword = str Sensitivity = float KeywordEntry = tuple[Keyword, Sensitivity] def recognize( recognizer, audio_data: AudioData, language: str | SphinxDataFilePaths = "en-US", keyword_entries: Sequence[KeywordEntry] | None = None, grammar: str | None = None, show_all: bool = False, ): """ Performs speech recognition on ``audio_data`` (an ``AudioData`` instance), using CMU Sphinx. The recognition language is determined by ``language``, an RFC5646 language tag like ``"en-US"`` or ``"en-GB"``, defaulting to US English. Out of the box, only ``en-US`` is supported. See `Notes on using `PocketSphinx `__ for information about installing other languages. This document is also included under ``reference/pocketsphinx.rst``. The ``language`` parameter can also be a tuple of filesystem paths, of the form ``(acoustic_parameters_directory, language_model_file, phoneme_dictionary_file)`` - this allows you to load arbitrary Sphinx models. If specified, the keywords to search for are determined by ``keyword_entries``, an iterable of tuples of the form ``(keyword, sensitivity)``, where ``keyword`` is a phrase, and ``sensitivity`` is how sensitive to this phrase the recognizer should be, on a scale of 0 (very insensitive, more false negatives) to 1 (very sensitive, more false positives) inclusive. If not specified or ``None``, no keywords are used and Sphinx will simply transcribe whatever words it recognizes. Specifying ``keyword_entries`` is more accurate than just looking for those same keywords in non-keyword-based transcriptions, because Sphinx knows specifically what sounds to look for. Sphinx can also handle FSG or JSGF grammars. The parameter ``grammar`` expects a path to the grammar file. Note that if a JSGF grammar is passed, an FSG grammar will be created at the same location to speed up execution in the next run. If ``keyword_entries`` are passed, content of ``grammar`` will be ignored. Returns the most likely transcription if ``show_all`` is false (the default). Otherwise, returns the Sphinx ``pocketsphinx.pocketsphinx.Decoder`` object resulting from the recognition. Raises a ``speech_recognition.UnknownValueError`` exception if the speech is unintelligible. Raises a ``speech_recognition.RequestError`` exception if there are any issues with the Sphinx installation. """ # TODO Move this validation into KeywordEntry initialization assert keyword_entries is None or all(isinstance(keyword, (type(""), type(u""))) and 0 <= sensitivity <= 1 for keyword, sensitivity in keyword_entries), "``keyword_entries`` must be ``None`` or a list of pairs of strings and numbers between 0 and 1" try: from pocketsphinx import FsgModel, Jsgf, pocketsphinx except ImportError: raise RequestError("missing PocketSphinx module: ensure that PocketSphinx is set up correctly.") if isinstance(language, str): # directory containing language data language_directory = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "pocketsphinx-data", language) if not os.path.isdir(language_directory): raise RequestError("missing PocketSphinx language data directory: \"{}\"".format(language_directory)) acoustic_parameters_directory = os.path.join(language_directory, "acoustic-model") language_model_file = os.path.join(language_directory, "language-model.lm.bin") phoneme_dictionary_file = os.path.join(language_directory, "pronounciation-dictionary.dict") else: # 3-tuple of Sphinx data file paths acoustic_parameters_directory, language_model_file, phoneme_dictionary_file = language if not os.path.isdir(acoustic_parameters_directory): raise RequestError("missing PocketSphinx language model parameters directory: \"{}\"".format(acoustic_parameters_directory)) if not os.path.isfile(language_model_file): raise RequestError("missing PocketSphinx language model file: \"{}\"".format(language_model_file)) if not os.path.isfile(phoneme_dictionary_file): raise RequestError("missing PocketSphinx phoneme dictionary file: \"{}\"".format(phoneme_dictionary_file)) # create decoder object config = pocketsphinx.Config() config.set_string("-hmm", acoustic_parameters_directory) # set the path of the hidden Markov model (HMM) parameter files config.set_string("-lm", language_model_file) config.set_string("-dict", phoneme_dictionary_file) config.set_string("-logfn", os.devnull) # disable logging (logging causes unwanted output in terminal) decoder = pocketsphinx.Decoder(config) # obtain audio data raw_data = audio_data.get_raw_data(convert_rate=16000, convert_width=2) # the included language models require audio to be 16-bit mono 16 kHz in little-endian format # obtain recognition results if keyword_entries is not None: # explicitly specified set of keywords with PortableNamedTemporaryFile("w") as f: # generate a keywords file - Sphinx documentation recommendeds sensitivities between 1e-50 and 1e-5 f.writelines("{} /1e{}/\n".format(keyword, 100 * sensitivity - 110) for keyword, sensitivity in keyword_entries) f.flush() # perform the speech recognition with the keywords file (this is inside the context manager so the file isn;t deleted until we're done) decoder.add_kws("keywords", f.name) decoder.activate_search("keywords") elif grammar is not None: # a path to a FSG or JSGF grammar if not os.path.exists(grammar): raise ValueError("Grammar '{0}' does not exist.".format(grammar)) grammar_path = os.path.abspath(os.path.dirname(grammar)) grammar_name = os.path.splitext(os.path.basename(grammar))[0] fsg_path = "{0}/{1}.fsg".format(grammar_path, grammar_name) if not os.path.exists(fsg_path): # create FSG grammar if not available jsgf = Jsgf(grammar) rule = jsgf.get_rule("{0}.{0}".format(grammar_name)) fsg = jsgf.build_fsg(rule, decoder.get_logmath(), 7.5) fsg.writefile(fsg_path) else: fsg = FsgModel(fsg_path, decoder.get_logmath(), 7.5) decoder.set_fsg(grammar_name, fsg) decoder.set_search(grammar_name) decoder.start_utt() # begin utterance processing decoder.process_raw(raw_data, False, True) # process audio data with recognition enabled (no_search = False), as a full utterance (full_utt = True) decoder.end_utt() # stop utterance processing if show_all: return decoder # return results hypothesis = decoder.hyp() if hypothesis is not None: return hypothesis.hypstr raise UnknownValueError() # no transcriptions available