140 lines
6.0 KiB
Python
140 lines
6.0 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
from catboost import CatBoostRegressor, Pool
|
|
from pandas import DataFrame
|
|
from typing import Any, Dict, Tuple
|
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
|
|
|
class ExamplePredictionModel(IFreqaiModel):
|
|
"""
|
|
User created prediction model. The class needs to override three necessary
|
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
|
"""
|
|
|
|
def make_labels(self, dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
User defines the labels here (target values).
|
|
:params:
|
|
:dataframe: the full dataframe for the present training period
|
|
"""
|
|
|
|
dataframe['s'] = (dataframe['close'].shift(-self.feature_parameters['period']).rolling(
|
|
self.feature_parameters['period']).max() / dataframe['close'] - 1)
|
|
self.dh.data['s_mean'] = dataframe['s'].mean()
|
|
self.dh.data['s_std'] = dataframe['s'].std()
|
|
|
|
print('label mean',self.dh.data['s_mean'],'label std',self.dh.data['s_std'])
|
|
|
|
return dataframe['s']
|
|
|
|
|
|
def train(self, unfiltered_dataframe: DataFrame, metadata: dict) -> Tuple[DataFrame, DataFrame]:
|
|
"""
|
|
Filter the training data and train a model to it. Train makes heavy use of the datahandler
|
|
for storing, saving, loading, and managed.
|
|
:params:
|
|
:unfiltered_dataframe: Full dataframe for the current training period
|
|
:metadata: pair metadata from strategy.
|
|
:returns:
|
|
:model: Trained model which can be used to inference (self.predict)
|
|
"""
|
|
print("--------------------Starting training--------------------")
|
|
|
|
# create the full feature list based on user config info
|
|
self.dh.training_features_list = self.dh.build_feature_list(self.config)
|
|
unfiltered_labels = self.make_labels(unfiltered_dataframe)
|
|
|
|
# filter the features requested by user in the configuration file and elegantly handle NaNs
|
|
features_filtered, labels_filtered = self.dh.filter_features(unfiltered_dataframe,
|
|
self.dh.training_features_list, unfiltered_labels, training_filter=True)
|
|
|
|
# split data into train/test data.
|
|
data_dictionary = self.dh.make_train_test_datasets(features_filtered, labels_filtered)
|
|
# standardize all data based on train_dataset only
|
|
data_dictionary = self.dh.standardize_data(data_dictionary)
|
|
|
|
# optional additional data cleaning
|
|
if self.feature_parameters['principal_component_analysis']:
|
|
self.dh.principal_component_analysis()
|
|
if self.feature_parameters["remove_outliers"]:
|
|
self.dh.remove_outliers(predict=False)
|
|
if self.feature_parameters['DI_threshold']:
|
|
self.dh.data['avg_mean_dist'] = self.dh.compute_distances()
|
|
|
|
print("length of train data", len(data_dictionary['train_features']))
|
|
|
|
model = self.fit(data_dictionary)
|
|
|
|
print('Finished training')
|
|
print(f'--------------------done training {metadata["pair"]}--------------------')
|
|
|
|
return model
|
|
|
|
def fit(self, data_dictionary: Dict) -> Any:
|
|
"""
|
|
Most regressors use the same function names and arguments e.g. user
|
|
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
|
management will be properly handled by Freqai.
|
|
:params:
|
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
|
all the training and test data/labels.
|
|
"""
|
|
|
|
train_data = Pool(
|
|
data=data_dictionary['train_features'],
|
|
label=data_dictionary['train_labels'],
|
|
weight=data_dictionary['train_weights']
|
|
)
|
|
|
|
test_data = Pool(
|
|
data=data_dictionary['test_features'],
|
|
label=data_dictionary['test_labels'],
|
|
weight=data_dictionary['test_weights']
|
|
)
|
|
|
|
model = CatBoostRegressor(verbose=100, early_stopping_rounds=400,
|
|
**self.model_training_parameters)
|
|
model.fit(X=train_data, eval_set=test_data)
|
|
|
|
return model
|
|
|
|
def predict(self, unfiltered_dataframe: DataFrame) -> Tuple[DataFrame, DataFrame]:
|
|
"""
|
|
Filter the prediction features data and predict with it.
|
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
|
:return:
|
|
:predictions: np.array of predictions
|
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
"""
|
|
|
|
print("--------------------Starting prediction--------------------")
|
|
|
|
original_feature_list = self.dh.build_feature_list(self.config)
|
|
filtered_dataframe, _ = self.dh.filter_features(unfiltered_dataframe, original_feature_list, training_filter=False)
|
|
filtered_dataframe = self.dh.standardize_data_from_metadata(filtered_dataframe)
|
|
self.dh.data_dictionary['prediction_features'] = filtered_dataframe
|
|
|
|
# optional additional data cleaning
|
|
if self.feature_parameters['principal_component_analysis']:
|
|
pca_components = self.dh.pca.transform(filtered_dataframe)
|
|
self.dh.data_dictionary['prediction_features'] = pd.DataFrame(data=pca_components,
|
|
columns = ['PC'+str(i) for i in range(0,self.dh.data['n_kept_components'])],
|
|
index = filtered_dataframe.index)
|
|
|
|
if self.feature_parameters["remove_outliers"]:
|
|
self.dh.remove_outliers(predict=True) # creates dropped index
|
|
|
|
if self.feature_parameters['DI_threshold']:
|
|
self.dh.check_if_pred_in_training_spaces() # sets do_predict
|
|
|
|
predictions = self.model.predict(self.dh.data_dictionary['prediction_features'])
|
|
|
|
# compute the non-standardized predictions
|
|
predictions = predictions * self.dh.data['labels_std'] + self.dh.data['labels_mean']
|
|
|
|
print("--------------------Finished prediction--------------------")
|
|
|
|
return (predictions, self.dh.do_predict)
|