stable/tests/optimize/test_backtesting.py
2021-02-27 09:33:00 +01:00

942 lines
38 KiB
Python

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import random
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
from freqtrade.data.converter import clean_ohlcv_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.persistence import LocalTrade
from freqtrade.resolvers import StrategyResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import SellType
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
ORDER_TYPES = [
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
},
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True
}]
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:].reset_index()
return new
def load_data_test(what, testdatadir):
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = history.load_pair_history(pair='UNITTEST/BTC', datadir=testdatadir,
timeframe='1m', timerange=timerange,
drop_incomplete=False,
fill_up_missing=False)
base = 0.001
if what == 'raise':
data.loc[:, 'open'] = data.index * base
data.loc[:, 'high'] = data.index * base + 0.0001
data.loc[:, 'low'] = data.index * base - 0.0001
data.loc[:, 'close'] = data.index * base
if what == 'lower':
data.loc[:, 'open'] = 1 - data.index * base
data.loc[:, 'high'] = 1 - data.index * base + 0.0001
data.loc[:, 'low'] = 1 - data.index * base - 0.0001
data.loc[:, 'close'] = 1 - data.index * base
if what == 'sine':
hz = 0.1 # frequency
data.loc[:, 'open'] = np.sin(data.index * hz) / 1000 + base
data.loc[:, 'high'] = np.sin(data.index * hz) / 1000 + base + 0.0001
data.loc[:, 'low'] = np.sin(data.index * hz) / 1000 + base - 0.0001
data.loc[:, 'close'] = np.sin(data.index * hz) / 1000 + base
return {'UNITTEST/BTC': clean_ohlcv_dataframe(data, timeframe='1m', pair='UNITTEST/BTC',
fill_missing=True)}
def simple_backtest(config, contour, mocker, testdatadir) -> None:
patch_exchange(mocker)
config['timeframe'] = '1m'
backtesting = Backtesting(config)
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
enable_protections=config.get('enable_protections', False),
)
# results :: <class 'pandas.core.frame.DataFrame'>
return results
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'):
data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair])
data = trim_dictlist(data, -201)
patch_exchange(mocker)
backtesting = Backtesting(conf)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
return {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 10,
'position_stacking': False,
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
# Unit tests
def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'timerange' not in config
assert 'export' not in config
assert 'runmode' in config
assert config['runmode'] == RunMode.BACKTEST
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
'freqtrade.configuration.configuration.create_datadir',
lambda c, x: x
)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--enable-position-stacking',
'--disable-max-market-positions',
'--timerange', ':100',
'--export', '/bar/foo',
'--export-filename', 'foo_bar.json',
'--fee', '0',
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.BACKTEST
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert log_has('Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'timerange' in config
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'export' in config
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
assert 'exportfilename' in config
assert isinstance(config['exportfilename'], Path)
assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog)
assert 'fee' in config
assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog)
def test_setup_optimize_configuration_stake_amount(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--stake-amount', '1',
'--starting-balance', '2'
]
conf = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert isinstance(conf, dict)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--stake-amount', '1',
'--starting-balance', '0.5'
]
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
pargs = get_args(args)
start_backtesting(pargs)
assert log_has('Starting freqtrade in Backtesting mode', caplog)
assert start_mock.call_count == 1
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
patch_exchange(mocker)
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.timeframe == '5m'
assert callable(backtesting.strategy.ohlcvdata_to_dataframe)
assert callable(backtesting.strategy.advise_buy)
assert callable(backtesting.strategy.advise_sell)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
del default_conf['timeframe']
default_conf['strategy_list'] = ['DefaultStrategy',
'SampleStrategy']
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
with pytest.raises(OperationalException):
Backtesting(default_conf)
log_has("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`", caplog)
def test_data_with_fee(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
default_conf['fee'] = 0.1234
fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.fee == 0.1234
assert fee_mock.call_count == 0
default_conf['fee'] = 0.0
backtesting = Backtesting(default_conf)
assert backtesting.fee == 0.0
assert fee_mock.call_count == 0
def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
backtesting = Backtesting(default_conf)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
assert len(processed['UNITTEST/BTC']) == 102
# Load strategy to compare the result between Backtesting function and strategy are the same
default_conf.update({'strategy': 'DefaultStrategy'})
strategy = StrategyResolver.load_strategy(default_conf)
processed2 = strategy.ohlcvdata_to_dataframe(data)
assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC'])
def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats')
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results')
sbs = mocker.patch('freqtrade.optimize.backtesting.store_backtest_stats')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
default_conf['timeframe'] = '1m'
default_conf['datadir'] = testdatadir
default_conf['export'] = 'trades'
default_conf['exportfilename'] = 'export.txt'
default_conf['timerange'] = '-1510694220'
backtesting = Backtesting(default_conf)
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:59:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog)
assert backtesting.strategy.dp._pairlists is not None
assert backtesting.strategy.bot_loop_start.call_count == 1
assert sbs.call_count == 1
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
default_conf['timeframe'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(default_conf)
with pytest.raises(OperationalException, match='No data found. Terminating.'):
backtesting.start()
def test_backtesting_no_pair_left(default_conf, mocker, caplog, testdatadir) -> None:
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=[]))
default_conf['timeframe'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
with pytest.raises(OperationalException, match='No pair in whitelist.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'):
Backtesting(default_conf)
def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, tickers) -> None:
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
mocker.patch('freqtrade.exchange.Exchange.get_tickers', tickers)
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['XRP/BTC']))
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist')
default_conf['ticker_interval'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
# Use stoploss from strategy
del default_conf['stoploss']
default_conf['timerange'] = '20180101-20180102'
default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PerformanceFilter"}]
with pytest.raises(OperationalException,
match='PerformanceFilter not allowed for backtesting.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PrecisionFilter"}, ]
Backtesting(default_conf)
# Multiple strategies
default_conf['strategy_list'] = ['DefaultStrategy', 'TestStrategyLegacy']
with pytest.raises(OperationalException,
match='PrecisionFilter not allowed for backtesting multiple strategies.'):
Backtesting(default_conf)
def test_backtest__enter_trade(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
default_conf['stake_amount'] = 'unlimited'
backtesting = Backtesting(default_conf)
pair = 'UNITTEST/BTC'
row = [
pd.Timestamp(year=2020, month=1, day=1, hour=5, minute=0),
1, # Sell
0.001, # Open
0.0011, # Close
0, # Sell
0.00099, # Low
0.0012, # High
]
trade = backtesting._enter_trade(pair, row=row, max_open_trades=2, open_trade_count=0)
assert isinstance(trade, LocalTrade)
assert trade.stake_amount == 495
trade = backtesting._enter_trade(pair, row=row, max_open_trades=2, open_trade_count=2)
assert trade is None
# Stake-amount too high!
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=600.0)
trade = backtesting._enter_trade(pair, row=row, max_open_trades=2, open_trade_count=0)
assert trade is None
# Stake-amount too high!
mocker.patch("freqtrade.wallets.Wallets.get_trade_stake_amount",
side_effect=DependencyException)
trade = backtesting._enter_trade(pair, row=row, max_open_trades=2, open_trade_count=0)
assert trade is None
def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
pair = 'UNITTEST/BTC'
timerange = TimeRange('date', None, 1517227800, 0)
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=10,
position_stacking=False,
)
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'stake_amount': [0.001, 0.001],
'amount': [0.00957442, 0.0097064],
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'fee_open': [0.0025, 0.0025],
'fee_close': [0.0025, 0.0025],
'trade_duration': [235, 40],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'sell_reason': [SellType.ROI.value, SellType.ROI.value],
'initial_stop_loss_abs': [0.0940005, 0.09272236],
'initial_stop_loss_ratio': [-0.1, -0.1],
'stop_loss_abs': [0.0940005, 0.09272236],
'stop_loss_ratio': [-0.1, -0.1],
'min_rate': [0.1038, 0.10302485],
'max_rate': [0.10501, 0.1038888],
'is_open': [False, False],
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
# Check open trade rate alignes to open rate
assert ln is not None
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_date"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
# Run a backtesting for an exiting 1min timeframe
timerange = TimeRange.parse_timerange('1510688220-1510700340')
data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
)
assert not results.empty
assert len(results) == 1
def test_processed(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
dict_of_tickerrows = load_data_test('raise', testdatadir)
dataframes = backtesting.strategy.ohlcvdata_to_dataframe(dict_of_tickerrows)
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
'ema10', 'rsi', 'fastd', 'plus_di']:
assert col in cols
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
# results do not carry-over to the next run, which is not given by using parametrize.
default_conf['protections'] = [
{
"method": "CooldownPeriod",
"stop_duration": 3,
}]
default_conf['enable_protections'] = True
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
tests = [
['sine', 9],
['raise', 10],
['lower', 0],
['sine', 9],
['raise', 10],
]
# While buy-signals are unrealistic, running backtesting
# over and over again should not cause different results
for [contour, numres] in tests:
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == numres
@pytest.mark.parametrize('protections,contour,expected', [
(None, 'sine', 35),
(None, 'raise', 19),
(None, 'lower', 0),
(None, 'sine', 35),
(None, 'raise', 19),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'lower', 0),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10),
])
def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir,
protections, contour, expected) -> None:
if protections:
default_conf['protections'] = protections
default_conf['enable_protections'] = True
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
# While buy-signals are unrealistic, running backtesting
# over and over again should not cause different results
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == expected
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
results = backtesting.backtest(**backtest_conf)
assert results.empty
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
results = backtesting.backtest(**backtest_conf)
assert results.empty
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf,
pair='UNITTEST/BTC', datadir=testdatadir)
default_conf['timeframe'] = '1m'
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = _trend_alternate # Override
backtesting.strategy.advise_sell = _trend_alternate # Override
results = backtesting.backtest(**backtest_conf)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
assert len(results) == 100
# One trade was force-closed at the end
assert len(results.loc[results['is_open']]) == 0
@pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC'])
@pytest.mark.parametrize("tres", [0, 20, 30])
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata['pair'] in ('ETH/BTC', 'LTC/BTC'):
multi = 20
else:
multi = 18
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
return dataframe
mocker.patch("freqtrade.exchange.Exchange.get_min_pair_stake_amount", return_value=0.00001)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC']
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs)
# Only use 500 lines to increase performance
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
data[pair] = data[pair][tres:].reset_index()
default_conf['timeframe'] = '5m'
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = _trend_alternate_hold # Override
backtesting.strategy.advise_sell = _trend_alternate_hold # Override
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 3,
'position_stacking': False,
}
results = backtesting.backtest(**backtest_conf)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results, '5m', 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results, '5m', 3)) == 0
backtest_conf = {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 1,
'position_stacking': False,
}
results = backtesting.backtest(**backtest_conf)
assert len(evaluate_result_multi(results, '5m', 1)) == 0
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats')
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', str(testdatadir),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions'
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
patch_exchange(mocker)
backtestmock = MagicMock(return_value=pd.DataFrame(columns=BT_DATA_COLUMNS))
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
text_table_mock = MagicMock()
sell_reason_mock = MagicMock()
strattable_mock = MagicMock()
strat_summary = MagicMock()
mocker.patch.multiple('freqtrade.optimize.optimize_reports',
text_table_bt_results=text_table_mock,
text_table_strategy=strattable_mock,
generate_pair_metrics=MagicMock(),
generate_sell_reason_stats=sell_reason_mock,
generate_strategy_metrics=strat_summary,
generate_daily_stats=MagicMock(),
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
]
args = get_args(args)
start_backtesting(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert text_table_mock.call_count == 4
assert strattable_mock.call_count == 1
assert sell_reason_mock.call_count == 2
assert strat_summary.call_count == 1
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
patch_exchange(mocker)
backtestmock = MagicMock(side_effect=[
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00', ], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00', ], utc=True),
'trade_duration': [235, 40],
'is_open': [False, False],
'stake_amount': [0.01, 0.01],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
}),
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
'profit_ratio': [0.03, 0.01, 0.1],
'profit_abs': [0.01, 0.02, 0.2],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00',
'2018-01-30 05:30:00'], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00',
'2018-01-30 08:30:00'], utc=True),
'trade_duration': [47, 40, 20],
'is_open': [False, False, False],
'stake_amount': [0.01, 0.01, 0.01],
'open_rate': [0.104445, 0.10302485, 0.122541],
'close_rate': [0.104969, 0.103541, 0.123541],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}),
])
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert 'BACKTESTING REPORT' in captured.out
assert 'SELL REASON STATS' in captured.out
assert 'LEFT OPEN TRADES REPORT' in captured.out
assert 'STRATEGY SUMMARY' in captured.out