stable/tests/optimize/test_backtesting.py
2021-02-27 09:32:59 +01:00

888 lines
35 KiB
Python

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import random
from pathlib import Path
from unittest.mock import MagicMock, PropertyMock
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade import constants
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi
from freqtrade.data.converter import clean_ohlcv_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.resolvers import StrategyResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import SellType
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
ORDER_TYPES = [
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
},
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True
}]
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:].reset_index()
return new
def load_data_test(what, testdatadir):
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = history.load_pair_history(pair='UNITTEST/BTC', datadir=testdatadir,
timeframe='1m', timerange=timerange,
drop_incomplete=False,
fill_up_missing=False)
base = 0.001
if what == 'raise':
data.loc[:, 'open'] = data.index * base
data.loc[:, 'high'] = data.index * base + 0.0001
data.loc[:, 'low'] = data.index * base - 0.0001
data.loc[:, 'close'] = data.index * base
if what == 'lower':
data.loc[:, 'open'] = 1 - data.index * base
data.loc[:, 'high'] = 1 - data.index * base + 0.0001
data.loc[:, 'low'] = 1 - data.index * base - 0.0001
data.loc[:, 'close'] = 1 - data.index * base
if what == 'sine':
hz = 0.1 # frequency
data.loc[:, 'open'] = np.sin(data.index * hz) / 1000 + base
data.loc[:, 'high'] = np.sin(data.index * hz) / 1000 + base + 0.0001
data.loc[:, 'low'] = np.sin(data.index * hz) / 1000 + base - 0.0001
data.loc[:, 'close'] = np.sin(data.index * hz) / 1000 + base
return {'UNITTEST/BTC': clean_ohlcv_dataframe(data, timeframe='1m', pair='UNITTEST/BTC',
fill_missing=True)}
def simple_backtest(config, contour, mocker, testdatadir) -> None:
patch_exchange(mocker)
config['timeframe'] = '1m'
backtesting = Backtesting(config)
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
enable_protections=config.get('enable_protections', False),
)
# results :: <class 'pandas.core.frame.DataFrame'>
return results
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'):
data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair])
data = trim_dictlist(data, -201)
patch_exchange(mocker)
backtesting = Backtesting(conf)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
return {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 10,
'position_stacking': False,
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
# Unit tests
def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'timerange' not in config
assert 'export' not in config
assert 'runmode' in config
assert config['runmode'] == RunMode.BACKTEST
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
'freqtrade.configuration.configuration.create_datadir',
lambda c, x: x
)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--enable-position-stacking',
'--disable-max-market-positions',
'--timerange', ':100',
'--export', '/bar/foo',
'--export-filename', 'foo_bar.json',
'--fee', '0',
]
config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.BACKTEST
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert log_has('Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'timerange' in config
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'export' in config
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
assert 'exportfilename' in config
assert isinstance(config['exportfilename'], Path)
assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog)
assert 'fee' in config
assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog)
def test_setup_optimize_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
# TODO: does this test still make sense?
conf = setup_optimize_configuration(get_args(args), RunMode.BACKTEST)
assert isinstance(conf, dict)
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
pargs = get_args(args)
start_backtesting(pargs)
assert log_has('Starting freqtrade in Backtesting mode', caplog)
assert start_mock.call_count == 1
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
patch_exchange(mocker)
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.timeframe == '5m'
assert callable(backtesting.strategy.ohlcvdata_to_dataframe)
assert callable(backtesting.strategy.advise_buy)
assert callable(backtesting.strategy.advise_sell)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
del default_conf['timeframe']
default_conf['strategy_list'] = ['DefaultStrategy',
'SampleStrategy']
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
with pytest.raises(OperationalException):
Backtesting(default_conf)
log_has("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`", caplog)
def test_data_with_fee(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
default_conf['fee'] = 0.1234
fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.fee == 0.1234
assert fee_mock.call_count == 0
default_conf['fee'] = 0.0
backtesting = Backtesting(default_conf)
assert backtesting.fee == 0.0
assert fee_mock.call_count == 0
def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
timerange = TimeRange.parse_timerange('1510694220-1510700340')
data = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange,
fill_up_missing=True)
backtesting = Backtesting(default_conf)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
assert len(processed['UNITTEST/BTC']) == 102
# Load strategy to compare the result between Backtesting function and strategy are the same
default_conf.update({'strategy': 'DefaultStrategy'})
strategy = StrategyResolver.load_strategy(default_conf)
processed2 = strategy.ohlcvdata_to_dataframe(data)
assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC'])
def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats')
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results')
sbs = mocker.patch('freqtrade.optimize.backtesting.store_backtest_stats')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
default_conf['timeframe'] = '1m'
default_conf['datadir'] = testdatadir
default_conf['export'] = 'trades'
default_conf['exportfilename'] = 'export.txt'
default_conf['timerange'] = '-1510694220'
backtesting = Backtesting(default_conf)
backtesting.strategy.bot_loop_start = MagicMock()
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:59:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog)
assert backtesting.strategy.dp._pairlists is not None
assert backtesting.strategy.bot_loop_start.call_count == 1
assert sbs.call_count == 1
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
def get_timerange(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
default_conf['timeframe'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(default_conf)
with pytest.raises(OperationalException, match='No data found. Terminating.'):
backtesting.start()
def test_backtesting_no_pair_left(default_conf, mocker, caplog, testdatadir) -> None:
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
mocker.patch('freqtrade.data.history.history_utils.load_pair_history',
MagicMock(return_value=pd.DataFrame()))
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=[]))
default_conf['timeframe'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
with pytest.raises(OperationalException, match='No pair in whitelist.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'):
Backtesting(default_conf)
def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, tickers) -> None:
mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True))
mocker.patch('freqtrade.exchange.Exchange.get_tickers', tickers)
mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y)
mocker.patch('freqtrade.data.history.get_timerange', get_timerange)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['XRP/BTC']))
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist')
default_conf['ticker_interval'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
# Use stoploss from strategy
del default_conf['stoploss']
default_conf['timerange'] = '20180101-20180102'
default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}]
with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PerformanceFilter"}]
with pytest.raises(OperationalException,
match='PerformanceFilter not allowed for backtesting.'):
Backtesting(default_conf)
default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PrecisionFilter"}, ]
Backtesting(default_conf)
# Multiple strategies
default_conf['strategy_list'] = ['DefaultStrategy', 'TestStrategyLegacy']
with pytest.raises(OperationalException,
match='PrecisionFilter not allowed for backtesting multiple strategies.'):
Backtesting(default_conf)
def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
pair = 'UNITTEST/BTC'
timerange = TimeRange('date', None, 1517227800, 0)
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=10,
position_stacking=False,
)
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'stake_amount': [0.001, 0.001],
'amount': [0.00957442, 0.0097064],
'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'fee_open': [0.0025, 0.0025],
'fee_close': [0.0025, 0.0025],
'trade_duration': [235, 40],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'sell_reason': [SellType.ROI.value, SellType.ROI.value],
'initial_stop_loss_abs': [0.0940005, 0.09272236],
'initial_stop_loss_ratio': [-0.1, -0.1],
'stop_loss_abs': [0.0940005, 0.09272236],
'stop_loss_ratio': [-0.1, -0.1],
'min_rate': [0.1038, 0.10302485],
'max_rate': [0.10501, 0.1038888],
'is_open': [False, False],
})
pd.testing.assert_frame_equal(results, expected)
data_pair = processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_date"]]
# Check open trade rate alignes to open rate
assert ln is not None
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_date"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
# Run a backtesting for an exiting 1min timeframe
timerange = TimeRange.parse_timerange('1510688220-1510700340')
data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
results = backtesting.backtest(
processed=processed,
start_date=min_date,
end_date=max_date,
max_open_trades=1,
position_stacking=False,
)
assert not results.empty
assert len(results) == 1
def test_processed(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
dict_of_tickerrows = load_data_test('raise', testdatadir)
dataframes = backtesting.strategy.ohlcvdata_to_dataframe(dict_of_tickerrows)
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
'ema10', 'rsi', 'fastd', 'plus_di']:
assert col in cols
def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None:
# While this test IS a copy of test_backtest_pricecontours, it's needed to ensure
# results do not carry-over to the next run, which is not given by using parametrize.
default_conf['protections'] = [
{
"method": "CooldownPeriod",
"stop_duration": 3,
}]
default_conf['enable_protections'] = True
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
tests = [
['sine', 9],
['raise', 10],
['lower', 0],
['sine', 9],
['raise', 10],
]
# While buy-signals are unrealistic, running backtesting
# over and over again should not cause different results
for [contour, numres] in tests:
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == numres
@pytest.mark.parametrize('protections,contour,expected', [
(None, 'sine', 35),
(None, 'raise', 19),
(None, 'lower', 0),
(None, 'sine', 35),
(None, 'raise', 19),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'lower', 0),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9),
([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10),
])
def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir,
protections, contour, expected) -> None:
if protections:
default_conf['protections'] = protections
default_conf['enable_protections'] = True
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
# While buy-signals are unrealistic, running backtesting
# over and over again should not cause different results
assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == expected
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
results = backtesting.backtest(**backtest_conf)
assert results.empty
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
results = backtesting.backtest(**backtest_conf)
assert results.empty
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf,
pair='UNITTEST/BTC', datadir=testdatadir)
default_conf['timeframe'] = '1m'
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = _trend_alternate # Override
backtesting.strategy.advise_sell = _trend_alternate # Override
results = backtesting.backtest(**backtest_conf)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
assert len(results) == 100
# One trade was force-closed at the end
assert len(results.loc[results['is_open']]) == 0
@pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC'])
@pytest.mark.parametrize("tres", [0, 20, 30])
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata['pair'] in ('ETH/BTC', 'LTC/BTC'):
multi = 20
else:
multi = 18
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
return dataframe
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC']
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs)
# Only use 500 lines to increase performance
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
data[pair] = data[pair][tres:].reset_index()
default_conf['timeframe'] = '5m'
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = _trend_alternate_hold # Override
backtesting.strategy.advise_sell = _trend_alternate_hold # Override
processed = backtesting.strategy.ohlcvdata_to_dataframe(data)
min_date, max_date = get_timerange(processed)
backtest_conf = {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 3,
'position_stacking': False,
}
results = backtesting.backtest(**backtest_conf)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results, '5m', 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results, '5m', 3)) == 0
backtest_conf = {
'processed': processed,
'start_date': min_date,
'end_date': max_date,
'max_open_trades': 1,
'position_stacking': False,
}
results = backtesting.backtest(**backtest_conf)
assert len(evaluate_result_multi(results, '5m', 1)) == 0
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest')
mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats')
mocker.patch('freqtrade.optimize.backtesting.show_backtest_results')
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', str(testdatadir),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions'
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
patch_exchange(mocker)
backtestmock = MagicMock(return_value=pd.DataFrame(columns=BT_DATA_COLUMNS))
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
text_table_mock = MagicMock()
sell_reason_mock = MagicMock()
strattable_mock = MagicMock()
strat_summary = MagicMock()
mocker.patch.multiple('freqtrade.optimize.optimize_reports',
text_table_bt_results=text_table_mock,
text_table_strategy=strattable_mock,
generate_pair_metrics=MagicMock(),
generate_sell_reason_stats=sell_reason_mock,
generate_strategy_metrics=strat_summary,
generate_daily_stats=MagicMock(),
)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
]
args = get_args(args)
start_backtesting(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert text_table_mock.call_count == 4
assert strattable_mock.call_count == 1
assert sell_reason_mock.call_count == 2
assert strat_summary.call_count == 1
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
]
for line in exists:
assert log_has(line, caplog)
@pytest.mark.filterwarnings("ignore:deprecated")
def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys):
patch_exchange(mocker)
backtestmock = MagicMock(side_effect=[
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'],
'profit_ratio': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00', ], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00', ], utc=True),
'trade_duration': [235, 40],
'is_open': [False, False],
'stake_amount': [0.01, 0.01],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
}),
pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'],
'profit_ratio': [0.03, 0.01, 0.1],
'profit_abs': [0.01, 0.02, 0.2],
'open_date': pd.to_datetime(['2018-01-29 18:40:00',
'2018-01-30 03:30:00',
'2018-01-30 05:30:00'], utc=True
),
'close_date': pd.to_datetime(['2018-01-29 20:45:00',
'2018-01-30 05:35:00',
'2018-01-30 08:30:00'], utc=True),
'trade_duration': [47, 40, 20],
'is_open': [False, False, False],
'stake_amount': [0.01, 0.01, 0.01],
'open_rate': [0.104445, 0.10302485, 0.122541],
'close_rate': [0.104969, 0.103541, 0.123541],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}),
])
mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist',
PropertyMock(return_value=['UNITTEST/BTC']))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'),
'--timeframe', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'TestStrategyLegacy',
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Loading data from 2017-11-14 20:57:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Backtesting with data from 2017-11-14 21:17:00 '
'up to 2017-11-14 22:58:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy TestStrategyLegacy',
]
for line in exists:
assert log_has(line, caplog)
captured = capsys.readouterr()
assert 'BACKTESTING REPORT' in captured.out
assert 'SELL REASON STATS' in captured.out
assert 'LEFT OPEN TRADES REPORT' in captured.out
assert 'STRATEGY SUMMARY' in captured.out