241 lines
9.2 KiB
Python
241 lines
9.2 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
# --- Do not remove these libs ---
|
|
from functools import reduce
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
import numpy as np # noqa
|
|
import pandas as pd # noqa
|
|
from pandas import DataFrame
|
|
from skopt.space import Categorical, Dimension, Integer, Real # noqa
|
|
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|
|
|
# --------------------------------
|
|
# Add your lib to import here
|
|
import talib.abstract as ta # noqa
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
|
|
|
|
class hyper_ethusdt2(IHyperOpt):
|
|
"""
|
|
This is a Hyperopt template to get you started.
|
|
|
|
More information in the documentation: https://www.freqtrade.io/en/latest/hyperopt/
|
|
|
|
You should:
|
|
- Add any lib you need to build your hyperopt.
|
|
|
|
You must keep:
|
|
- The prototypes for the methods: populate_indicators, indicator_space, buy_strategy_generator.
|
|
|
|
The methods roi_space, generate_roi_table and stoploss_space are not required
|
|
and are provided by default.
|
|
However, you may override them if you need 'roi' and 'stoploss' spaces that
|
|
differ from the defaults offered by Freqtrade.
|
|
Sample implementation of these methods will be copied to `user_data/hyperopts` when
|
|
creating the user-data directory using `freqtrade create-userdir --userdir user_data`,
|
|
or is available online under the following URL:
|
|
https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py.
|
|
"""
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by Hyperopt.
|
|
"""
|
|
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use.
|
|
"""
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if params.get('ao-enabled'):
|
|
conditions.append(dataframe['ao'] > params['ao1-value'])
|
|
conditions.append(dataframe['ao'] < params['ao2-value'])
|
|
if params.get('angle_tsf_mid-enabled'):
|
|
conditions.append(dataframe['angle_tsf_mid'] < params['angle_tsf_mid-value'])
|
|
if params.get('rsi-enabled'):
|
|
conditions.append(params['rsi1-value'] < dataframe['rsi'])
|
|
conditions.append(params['rsi2-value'] > dataframe['rsi'])
|
|
|
|
# TRIGGERS
|
|
if 'trigger' in params:
|
|
if params['trigger'] == 'ao_cross':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['ao'], 0
|
|
))
|
|
if params['trigger'] == 'angle_tsf_mid_cross_up':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['angle_tsf_mid'], -50
|
|
))
|
|
|
|
if conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
@staticmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching buy strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(-50, 50, name='ao1-value'),
|
|
Integer(-50, 50, name='ao2-value'),
|
|
Integer(-87, 85, name='angle_tsf_mid-value'),
|
|
Integer(8, 92, name='rsi1-value'),
|
|
Integer(8, 92, name='rsi2-value'),
|
|
Categorical([True, False], name='ao-enabled'),
|
|
Categorical([True, False], name='angle_tsf_mid-enabled'),
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
Categorical(['ao_cross', 'angle_tsf_mid_cross_up'], name='trigger')
|
|
]
|
|
|
|
@staticmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the sell strategy parameters to be used by Hyperopt.
|
|
"""
|
|
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Sell strategy Hyperopt will build and use.
|
|
"""
|
|
conditions = []
|
|
|
|
# GUARDS AND TRENDS
|
|
if params.get('ao-enabled'):
|
|
conditions.append(dataframe['ao'] > params['ao1-value_sell'])
|
|
conditions.append(dataframe['ao'] < params['ao2-value_sell'])
|
|
if params.get('angle_tsf_mid-enabled'):
|
|
conditions.append(dataframe['angle_tsf_mid'] > params['angle_tsf_mid-value_sell'])
|
|
if params.get('rsi-enabled'):
|
|
conditions.append(params['rsi1-value_sell'] < dataframe['rsi'])
|
|
conditions.append(params['rsi2-value_sell'] > dataframe['rsi'])
|
|
|
|
# TRIGGERS
|
|
if 'trigger' in params:
|
|
if params['trigger'] == 'ao_cross_dw':
|
|
conditions.append(qtpylib.crossed_below(
|
|
dataframe['ao'], 0
|
|
))
|
|
if params['trigger'] == 'angle_tsf_mid_cross_dw':
|
|
conditions.append(qtpylib.crossed_below(
|
|
dataframe['angle_tsf_mid'], 50
|
|
))
|
|
|
|
|
|
if conditions:
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'sell'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_sell_trend
|
|
|
|
@staticmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching sell strategy parameters.
|
|
"""
|
|
return [
|
|
Integer(-50, 50, name='ao1-value_sell'),
|
|
Integer(-50, 50, name='ao2-value_sell'),
|
|
Integer(-87, 85, name='angle_tsf_mid-value_sell'),
|
|
Integer(8, 92, name='rsi1-value_sell'),
|
|
Integer(8, 92, name='rsi2-value_sell'),
|
|
Categorical([True, False], name='ao-enabled'),
|
|
Categorical([True, False], name='angle_tsf_mid-enabled'),
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
Categorical(['angle_tsf_mid_cross_dw', 'ao_cross_dw'], name='trigger')
|
|
]
|
|
|
|
@staticmethod
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Generate the ROI table that will be used by Hyperopt
|
|
|
|
This implementation generates the default legacy Freqtrade ROI tables.
|
|
|
|
Change it if you need different number of steps in the generated
|
|
ROI tables or other structure of the ROI tables.
|
|
|
|
Please keep it aligned with parameters in the 'roi' optimization
|
|
hyperspace defined by the roi_space method.
|
|
"""
|
|
roi_table = {}
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
return roi_table
|
|
|
|
@staticmethod
|
|
def roi_space() -> List[Dimension]:
|
|
"""
|
|
Values to search for each ROI steps
|
|
|
|
Override it if you need some different ranges for the parameters in the
|
|
'roi' optimization hyperspace.
|
|
|
|
Please keep it aligned with the implementation of the
|
|
generate_roi_table method.
|
|
"""
|
|
return [
|
|
Integer(60, 600, name='roi_t1'),
|
|
Integer(300, 1000, name='roi_t2'),
|
|
Integer(500, 1500, name='roi_t3'),
|
|
Real(0.01, 0.04, name='roi_p1'),
|
|
Real(0.01, 0.07, name='roi_p2'),
|
|
Real(0.01, 0.20, name='roi_p3'),
|
|
]
|
|
|
|
@staticmethod
|
|
def stoploss_space() -> List[Dimension]:
|
|
"""
|
|
Stoploss Value to search
|
|
|
|
Override it if you need some different range for the parameter in the
|
|
'stoploss' optimization hyperspace.
|
|
"""
|
|
return [
|
|
Real(-0.25, -0.02, name='stoploss'),
|
|
]
|
|
|
|
@staticmethod
|
|
def trailing_space() -> List[Dimension]:
|
|
"""
|
|
Create a trailing stoploss space.
|
|
|
|
You may override it in your custom Hyperopt class.
|
|
"""
|
|
return [
|
|
# It was decided to always set trailing_stop is to True if the 'trailing' hyperspace
|
|
# is used. Otherwise hyperopt will vary other parameters that won't have effect if
|
|
# trailing_stop is set False.
|
|
# This parameter is included into the hyperspace dimensions rather than assigning
|
|
# it explicitly in the code in order to have it printed in the results along with
|
|
# other 'trailing' hyperspace parameters.
|
|
Categorical([True], name='trailing_stop'),
|
|
|
|
Real(0.01, 0.35, name='trailing_stop_positive'),
|
|
|
|
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
|
|
# so this intermediate parameter is used as the value of the difference between
|
|
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
|
|
# generate_trailing_params() method.
|
|
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
|
|
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
|
|
|
|
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
|
]
|