stable/freqtrade/templates/FreqaiExampleStrategy.py

184 lines
7.3 KiB
Python

import logging
from functools import reduce
import numpy as np
import pandas as pd
import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.freqai.strategy_bridge import CustomModel
from freqtrade.strategy import merge_informative_pair
from freqtrade.strategy.interface import IStrategy
logger = logging.getLogger(__name__)
class FreqaiExampleStrategy(IStrategy):
"""
Example strategy showing how the user connects their own
IFreqaiModel to the strategy. Namely, the user uses:
self.model = CustomModel(self.config)
self.model.bridge.start(dataframe, metadata)
to make predictions on their data. populate_any_indicators() automatically
generates the variety of features indicated by the user in the
canonical freqtrade configuration file under config['freqai'].
"""
minimal_roi = {"0": 0.01, "240": -1}
plot_config = {
"main_plot": {},
"subplots": {
"prediction": {"prediction": {"color": "blue"}},
"target_roi": {
"target_roi": {"color": "brown"},
},
"do_predict": {
"do_predict": {"color": "brown"},
},
},
}
stoploss = -0.05
use_sell_signal = True
startup_candle_count: int = 1000
def informative_pairs(self):
pairs = self.freqai_info["corr_pairlist"]
informative_pairs = []
for tf in self.timeframes:
informative_pairs.append([(pair, tf) for pair in pairs])
return informative_pairs
def populate_any_indicators(self, pair, df, tf, informative=None, coin=""):
"""
Function designed to automatically generate, name and merge features
from user indicated timeframes in the configuration file. User can add
additional features here, but must follow the naming convention.
:params:
:pair: pair to be used as informative
:df: strategy dataframe which will receive merges from informatives
:tf: timeframe of the dataframe which will modify the feature names
:informative: the dataframe associated with the informative pair
:coin: the name of the coin which will modify the feature names.
"""
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
informative[coin + "rsi"] = ta.RSI(informative, timeperiod=14)
informative[coin + "mfi"] = ta.MFI(informative, timeperiod=25)
informative[coin + "adx"] = ta.ADX(informative, window=20)
informative[coin + "20sma"] = ta.SMA(informative, timeperiod=20)
informative[coin + "21ema"] = ta.EMA(informative, timeperiod=21)
informative[coin + "bmsb"] = np.where(
informative[coin + "20sma"].lt(informative[coin + "21ema"]), 1, 0
)
informative[coin + "close_over_20sma"] = informative["close"] / informative[coin + "20sma"]
informative[coin + "mfi"] = ta.MFI(informative, timeperiod=25)
informative[coin + "ema21"] = ta.EMA(informative, timeperiod=21)
informative[coin + "sma20"] = ta.SMA(informative, timeperiod=20)
stoch = ta.STOCHRSI(informative, 15, 20, 2, 2)
informative[coin + "srsi-fk"] = stoch["fastk"]
informative[coin + "srsi-fd"] = stoch["fastd"]
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(informative), window=14, stds=2.2)
informative[coin + "bb_lowerband"] = bollinger["lower"]
informative[coin + "bb_middleband"] = bollinger["mid"]
informative[coin + "bb_upperband"] = bollinger["upper"]
informative[coin + "bb_width"] = (
informative[coin + "bb_upperband"] - informative[coin + "bb_lowerband"]
) / informative[coin + "bb_middleband"]
informative[coin + "close-bb_lower"] = (
informative["close"] / informative[coin + "bb_lowerband"]
)
informative[coin + "roc"] = ta.ROC(informative, timeperiod=3)
informative[coin + "adx"] = ta.ADX(informative, window=14)
macd = ta.MACD(informative)
informative[coin + "macd"] = macd["macd"]
informative[coin + "pct-change"] = informative["close"].pct_change()
informative[coin + "relative_volume"] = (
informative["volume"] / informative["volume"].rolling(10).mean()
)
informative[coin + "pct-change"] = informative["close"].pct_change()
indicators = [col for col in informative if col.startswith(coin)]
for n in range(self.freqai_info["feature_parameters"]["shift"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]]
df = df.drop(columns=skip_columns)
return df
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# the configuration file parameters are stored here
self.freqai_info = self.config["freqai"]
# the model is instantiated here
self.model = CustomModel(self.config)
print("Populating indicators...")
# the following loops are necessary for building the features
# indicated by the user in the configuration file.
for tf in self.freqai_info["timeframes"]:
dataframe = self.populate_any_indicators(metadata["pair"], dataframe.copy(), tf)
for i in self.freqai_info["corr_pairlist"]:
dataframe = self.populate_any_indicators(
i, dataframe.copy(), tf, coin=i.split("/")[0] + "-"
)
# the model will return 4 values, its prediction, an indication of whether or not the
# prediction should be accepted, the target mean/std values from the labels used during
# each training period.
(
dataframe["prediction"],
dataframe["do_predict"],
dataframe["target_mean"],
dataframe["target_std"],
) = self.model.bridge.start(dataframe, metadata)
dataframe["target_roi"] = dataframe["target_mean"] + dataframe["target_std"] * 0.5
dataframe["sell_roi"] = dataframe["target_mean"] - dataframe["target_std"] * 1.5
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
buy_conditions = [
(dataframe["prediction"] > dataframe["target_roi"]) & (dataframe["do_predict"] == 1)
]
if buy_conditions:
dataframe.loc[reduce(lambda x, y: x | y, buy_conditions), "buy"] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# sell_goal = eval('self.'+metadata['pair'].split("/")[0]+'_sell_goal.value')
sell_conditions = [
(dataframe["prediction"] < dataframe["sell_roi"]) & (dataframe["do_predict"] == 1)
]
if sell_conditions:
dataframe.loc[reduce(lambda x, y: x | y, sell_conditions), "sell"] = 1
return dataframe
def get_ticker_indicator(self):
return int(self.config["timeframe"][:-1])