189 lines
8.1 KiB
Python
189 lines
8.1 KiB
Python
import logging
|
|
from functools import reduce
|
|
|
|
import pandas as pd
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
|
|
from freqtrade.strategy import DecimalParameter, IntParameter, IStrategy, merge_informative_pair
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class freqai_test_multimodel_strat(IStrategy):
|
|
"""
|
|
Example strategy showing how the user connects their own
|
|
IFreqaiModel to the strategy. Namely, the user uses:
|
|
self.freqai.start(dataframe, metadata)
|
|
|
|
to make predictions on their data. populate_any_indicators() automatically
|
|
generates the variety of features indicated by the user in the
|
|
canonical freqtrade configuration file under config['freqai'].
|
|
"""
|
|
|
|
minimal_roi = {"0": 0.1, "240": -1}
|
|
|
|
plot_config = {
|
|
"main_plot": {},
|
|
"subplots": {
|
|
"prediction": {"prediction": {"color": "blue"}},
|
|
"target_roi": {
|
|
"target_roi": {"color": "brown"},
|
|
},
|
|
"do_predict": {
|
|
"do_predict": {"color": "brown"},
|
|
},
|
|
},
|
|
}
|
|
|
|
process_only_new_candles = True
|
|
stoploss = -0.05
|
|
use_exit_signal = True
|
|
startup_candle_count: int = 300
|
|
can_short = False
|
|
|
|
linear_roi_offset = DecimalParameter(
|
|
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
|
|
)
|
|
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
|
|
|
def informative_pairs(self):
|
|
whitelist_pairs = self.dp.current_whitelist()
|
|
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
|
informative_pairs = []
|
|
for tf in self.config["freqai"]["feature_parameters"]["include_timeframes"]:
|
|
for pair in whitelist_pairs:
|
|
informative_pairs.append((pair, tf))
|
|
for pair in corr_pairs:
|
|
if pair in whitelist_pairs:
|
|
continue # avoid duplication
|
|
informative_pairs.append((pair, tf))
|
|
return informative_pairs
|
|
|
|
def populate_any_indicators(
|
|
self, metadata, pair, df, tf, informative=None, coin="", set_generalized_indicators=False
|
|
):
|
|
"""
|
|
Function designed to automatically generate, name and merge features
|
|
from user indicated timeframes in the configuration file. User controls the indicators
|
|
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
|
(see convention below). I.e. user should not prepend any supporting metrics
|
|
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
|
model.
|
|
:params:
|
|
:pair: pair to be used as informative
|
|
:df: strategy dataframe which will receive merges from informatives
|
|
:tf: timeframe of the dataframe which will modify the feature names
|
|
:informative: the dataframe associated with the informative pair
|
|
:coin: the name of the coin which will modify the feature names.
|
|
"""
|
|
|
|
with self.freqai.lock:
|
|
if informative is None:
|
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
|
|
|
# first loop is automatically duplicating indicators for time periods
|
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
|
|
t = int(t)
|
|
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
|
|
|
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
|
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
|
informative[f"%-{coin}raw_price"] = informative["close"]
|
|
|
|
indicators = [col for col in informative if col.startswith("%")]
|
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
if n == 0:
|
|
continue
|
|
informative_shift = informative[indicators].shift(n)
|
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
informative = pd.concat((informative, informative_shift), axis=1)
|
|
|
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
skip_columns = [
|
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
]
|
|
df = df.drop(columns=skip_columns)
|
|
|
|
# Add generalized indicators here (because in live, it will call this
|
|
# function to populate indicators during training). Notice how we ensure not to
|
|
# add them multiple times
|
|
if set_generalized_indicators:
|
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
|
|
|
# user adds targets here by prepending them with &- (see convention below)
|
|
# If user wishes to use multiple targets, a multioutput prediction model
|
|
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
|
df["&-s_close"] = (
|
|
df["close"]
|
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.mean()
|
|
/ df["close"]
|
|
- 1
|
|
)
|
|
|
|
df["&-s_range"] = (
|
|
df["close"]
|
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.max()
|
|
-
|
|
df["close"]
|
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.min()
|
|
)
|
|
|
|
return df
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
self.freqai_info = self.config["freqai"]
|
|
|
|
# All indicators must be populated by populate_any_indicators() for live functionality
|
|
# to work correctly.
|
|
# the model will return 4 values, its prediction, an indication of whether or not the
|
|
# prediction should be accepted, the target mean/std values from the labels used during
|
|
# each training period.
|
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
|
|
|
dataframe["target_roi"] = dataframe["&-s_close_mean"] + dataframe["&-s_close_std"] * 1.25
|
|
dataframe["sell_roi"] = dataframe["&-s_close_mean"] - dataframe["&-s_close_std"] * 1.25
|
|
return dataframe
|
|
|
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
enter_long_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"]]
|
|
|
|
if enter_long_conditions:
|
|
df.loc[
|
|
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
|
] = (1, "long")
|
|
|
|
enter_short_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"]]
|
|
|
|
if enter_short_conditions:
|
|
df.loc[
|
|
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
|
|
] = (1, "short")
|
|
|
|
return df
|
|
|
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
|
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] < df["sell_roi"] * 0.25]
|
|
if exit_long_conditions:
|
|
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
|
|
|
|
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] > df["target_roi"] * 0.25]
|
|
if exit_short_conditions:
|
|
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
|
|
|
return df
|