stable/freqtrade/optimize/hyperopt.py
2020-02-25 16:17:56 +01:00

674 lines
28 KiB
Python

# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
import os
import functools
import locale
import logging
import random
import sys
import warnings
from collections import OrderedDict, deque
from math import factorial, log
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List, Optional, Callable
import rapidjson
from colorama import Fore, Style
from colorama import init as colorama_init
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt_backend import CustomImmediateResultBackend
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver, HyperOptResolver)
from joblib import (Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects)
from joblib import register_parallel_backend, parallel_backend
from pandas import DataFrame
# Suppress scikit-learn FutureWarnings from skopt
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
from skopt import Optimizer
from skopt.space import Dimension
logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models
# in the skopt models list
SKOPT_MODELS_MAX_NUM = 10
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
class Hyperopt:
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
To run a backtest:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.backtesting = Backtesting(self.config)
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.trials_file = (self.config['user_data_dir'] / 'hyperopt_results' /
'hyperopt_results.pickle')
self.tickerdata_pickle = (self.config['user_data_dir'] / 'hyperopt_results' /
'hyperopt_tickerdata.pkl')
self.total_epochs = config['epochs'] if 'epochs' in config else 0
self.effort = config['effort'] if 'effort' in config else -1
self.max_epoch = 0
self.search_space_size = 0
self.max_epoch_reached = False
self.min_epochs = INITIAL_POINTS
self.current_best_loss = 100
self.current_best_epoch = 0
self.epochs_since_last_best: List = []
self.avg_best_occurrence = 0
if not self.config.get('hyperopt_continue'):
self.clean_hyperopt()
else:
logger.info("Continuing on previous hyperopt results.")
self.num_trials_saved = 0
# Previous evaluations
self.trials: List = []
self.opt: Optimizer
self.opt = None
self.f_val: List = []
self.to_ask: deque
self.to_ask = deque()
self.tell: Callable
self.tell = None
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
self.backtesting.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.populate_buy_trend # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.populate_sell_trend # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
else:
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
self.max_open_trades = 0
self.position_stacking = self.config.get('position_stacking', False)
if self.has_space('sell'):
# Make sure use_sell_signal is enabled
if 'ask_strategy' not in self.config:
self.config['ask_strategy'] = {}
self.config['ask_strategy']['use_sell_signal'] = True
self.print_all = self.config.get('print_all', False)
self.print_colorized = self.config.get('print_colorized', False)
self.print_json = self.config.get('print_json', False)
@staticmethod
def get_lock_filename(config: Dict[str, Any]) -> str:
return str(config['user_data_dir'] / 'hyperopt.lock')
def clean_hyperopt(self) -> None:
"""
Remove hyperopt pickle files to restart hyperopt.
"""
for f in [self.tickerdata_pickle, self.trials_file]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
p.unlink()
def _get_params_dict(self, raw_params: List[Any]) -> Dict:
dimensions: List[Dimension] = self.dimensions
# Ensure the number of dimensions match
# the number of parameters in the list.
if len(raw_params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions.')
# Return a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters.
return {d.name: v for d, v in zip(dimensions, raw_params)}
def save_trials(self, final: bool = False) -> None:
"""
Save hyperopt trials to file
"""
num_trials = len(self.trials)
print()
if num_trials > self.num_trials_saved:
logger.info(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
dump(self.trials, self.trials_file)
self.num_trials_saved = num_trials
if final:
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
f"saved to '{self.trials_file}'.")
@staticmethod
def _read_trials(trials_file: Path) -> List:
"""
Read hyperopt trials file
"""
logger.info("Reading Trials from '%s'", trials_file)
trials = load(trials_file)
return trials
def _get_params_details(self, params: Dict) -> Dict:
"""
Return the params for each space
"""
result: Dict = {}
if self.has_space('buy'):
result['buy'] = {p.name: params.get(p.name) for p in self.hyperopt_space('buy')}
if self.has_space('sell'):
result['sell'] = {p.name: params.get(p.name) for p in self.hyperopt_space('sell')}
if self.has_space('roi'):
result['roi'] = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('stoploss'):
result['stoploss'] = {
p.name: params.get(p.name)
for p in self.hyperopt_space('stoploss')
}
if self.has_space('trailing'):
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
return result
@staticmethod
def print_epoch_details(results,
total_epochs: int,
print_json: bool,
no_header: bool = False,
header_str: str = None) -> None:
"""
Display details of the hyperopt result
"""
params = results.get('params_details', {})
# Default header string
if header_str is None:
header_str = "Best result"
if not no_header:
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
print(f"\n{header_str}:\n\n{explanation_str}\n")
if print_json:
result_dict: Dict = {}
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
Hyperopt._params_update_for_json(result_dict, params, s)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
else:
Hyperopt._params_pretty_print(params, 'buy', "Buy hyperspace params:")
Hyperopt._params_pretty_print(params, 'sell', "Sell hyperspace params:")
Hyperopt._params_pretty_print(params, 'roi', "ROI table:")
Hyperopt._params_pretty_print(params, 'stoploss', "Stoploss:")
Hyperopt._params_pretty_print(params, 'trailing', "Trailing stop:")
@staticmethod
def _params_update_for_json(result_dict, params, space: str) -> None:
if space in params:
space_params = Hyperopt._space_params(params, space)
if space in ['buy', 'sell']:
result_dict.setdefault('params', {}).update(space_params)
elif space == 'roi':
# Convert keys in min_roi dict to strings because
# rapidjson cannot dump dicts with integer keys...
# OrderedDict is used to keep the numeric order of the items
# in the dict.
result_dict['minimal_roi'] = OrderedDict(
(str(k), v) for k, v in space_params.items())
else: # 'stoploss', 'trailing'
result_dict.update(space_params)
@staticmethod
def _params_pretty_print(params, space: str, header: str) -> None:
if space in params:
space_params = Hyperopt._space_params(params, space, 5)
if space == 'stoploss':
print(header, space_params.get('stoploss'))
else:
print(header)
pprint(space_params, indent=4)
@staticmethod
def _space_params(params, space: str, r: int = None) -> Dict:
d = params[space]
# Round floats to `r` digits after the decimal point if requested
return round_dict(d, r) if r else d
@staticmethod
def is_best_loss(results, current_best_loss: float) -> bool:
return results['loss'] < current_best_loss
def print_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
is_best = results['is_best']
if self.print_all or is_best:
self.print_results_explanation(results, self.total_epochs or self.max_epoch,
self.print_all, self.print_colorized)
@staticmethod
def print_results_explanation(results, total_epochs, highlight_best: bool,
print_colorized: bool) -> None:
"""
Log results explanation string
"""
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
# Colorize output
if print_colorized:
if results['total_profit'] > 0:
explanation_str = Fore.GREEN + explanation_str
if highlight_best and results['is_best']:
explanation_str = Style.BRIGHT + explanation_str
print(explanation_str)
@staticmethod
def _format_explanation_string(results, total_epochs) -> str:
return (("*" if 'is_initial_point' in results and results['is_initial_point'] else " ") +
f"{results['current_epoch']:5d}/{total_epochs}: " +
f"{results['results_explanation']} " + f"Objective: {results['loss']:.5f}")
def has_space(self, space: str) -> bool:
"""
Tell if the space value is contained in the configuration
"""
# The 'trailing' space is not included in the 'default' set of spaces
if space == 'trailing':
return any(s in self.config['spaces'] for s in [space, 'all'])
else:
return any(s in self.config['spaces'] for s in [space, 'all', 'default'])
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
"""
Return the dimensions in the hyperoptimization space.
:param space: Defines hyperspace to return dimensions for.
If None, then the self.has_space() will be used to return dimensions
for all hyperspaces used.
"""
spaces: List[Dimension] = []
if space == 'buy' or (space is None and self.has_space('buy')):
logger.debug("Hyperopt has 'buy' space")
spaces += self.custom_hyperopt.indicator_space()
if space == 'sell' or (space is None and self.has_space('sell')):
logger.debug("Hyperopt has 'sell' space")
spaces += self.custom_hyperopt.sell_indicator_space()
if space == 'roi' or (space is None and self.has_space('roi')):
logger.debug("Hyperopt has 'roi' space")
spaces += self.custom_hyperopt.roi_space()
if space == 'stoploss' or (space is None and self.has_space('stoploss')):
logger.debug("Hyperopt has 'stoploss' space")
spaces += self.custom_hyperopt.stoploss_space()
if space == 'trailing' or (space is None and self.has_space('trailing')):
logger.debug("Hyperopt has 'trailing' space")
spaces += self.custom_hyperopt.trailing_space()
return spaces
def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
"""
Used Optimize function. Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
params_dict = self._get_params_dict(raw_params)
params_details = self._get_params_details(params_dict)
if self.has_space('roi'):
self.backtesting.strategy.minimal_roi = \
self.custom_hyperopt.generate_roi_table(params_dict)
if self.has_space('buy'):
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.buy_strategy_generator(params_dict)
if self.has_space('sell'):
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.sell_strategy_generator(params_dict)
if self.has_space('stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss']
if self.has_space('trailing'):
d = self.custom_hyperopt.generate_trailing_params(params_dict)
self.backtesting.strategy.trailing_stop = d['trailing_stop']
self.backtesting.strategy.trailing_stop_positive = d['trailing_stop_positive']
self.backtesting.strategy.trailing_stop_positive_offset = \
d['trailing_stop_positive_offset']
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
processed = load(self.tickerdata_pickle)
min_date, max_date = get_timerange(processed)
backtesting_results = self.backtesting.backtest(
processed=processed,
stake_amount=self.config['stake_amount'],
start_date=min_date,
end_date=max_date,
max_open_trades=self.max_open_trades,
position_stacking=self.position_stacking,
)
return self._get_results_dict(backtesting_results, min_date, max_date, params_dict,
params_details, raw_params)
def _get_results_dict(self, backtesting_results, min_date, max_date, params_dict,
params_details, raw_params):
results_metrics = self._calculate_results_metrics(backtesting_results)
results_explanation = self._format_results_explanation_string(results_metrics)
trade_count = results_metrics['trade_count']
total_profit = results_metrics['total_profit']
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
loss: float = MAX_LOSS
if trade_count >= self.config['hyperopt_min_trades']:
loss = self.calculate_loss(results=backtesting_results,
trade_count=trade_count,
min_date=min_date.datetime,
max_date=max_date.datetime)
return {
'loss': loss,
'params_dict': params_dict,
'params_details': params_details,
'results_metrics': results_metrics,
'results_explanation': results_explanation,
'total_profit': total_profit,
'asked': raw_params,
}
def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict:
return {
'trade_count': len(backtesting_results.index),
'avg_profit': backtesting_results.profit_percent.mean() * 100.0,
'total_profit': backtesting_results.profit_abs.sum(),
'profit': backtesting_results.profit_percent.sum() * 100.0,
'duration': backtesting_results.trade_duration.mean(),
}
def _format_results_explanation_string(self, results_metrics: Dict) -> str:
"""
Return the formatted results explanation in a string
"""
stake_cur = self.config['stake_currency']
return (f"{results_metrics['trade_count']:6d} trades. "
f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
f"Avg duration {results_metrics['duration']:5.1f} min.").encode(
locale.getpreferredencoding(), 'replace').decode('utf-8')
def get_optimizer(self, dimensions: List[Dimension], cpu_count,
n_initial_points=INITIAL_POINTS) -> Optimizer:
return Optimizer(
dimensions,
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=n_initial_points,
acq_optimizer_kwargs={'n_jobs': cpu_count},
model_queue_size=SKOPT_MODELS_MAX_NUM,
random_state=self.random_state,
)
def run_optimizer_parallel(self, parallel: Parallel, tries: int, first_try: int,
jobs: int) -> List:
result = parallel(
delayed(wrap_non_picklable_objects(self.parallel_objective))(asked, i)
for asked, i in zip(self.opt_generator(jobs, tries), range(
first_try, first_try + tries)))
return result
def opt_generator(self, jobs: int, tries: int):
while True:
if self.f_val:
# print("opt.tell(): ", [v['asked'] for v in self.f_val],
# [v['loss'] for v in self.f_val])
self.tell = functools.partial(self.opt.tell, [v['asked'] for v in self.f_val],
[v['loss'] for v in self.f_val])
self.f_val = []
if not self.to_ask:
self.opt.update_next()
self.to_ask.extend(self.opt.ask(n_points=tries))
self.fit = True
yield self.to_ask.popleft()
# yield self.opt.ask()
def parallel_objective(self, asked, n):
self.log_results_immediate(n)
return self.generate_optimizer(asked)
def parallel_callback(self, f_val):
if self.tell:
self.tell(fit=self.fit)
self.tell = None
self.fit = False
self.f_val.extend(f_val)
def log_results_immediate(self, n) -> None:
print('.', end='')
sys.stdout.flush()
def log_results(self, f_val, frame_start, total_epochs: int) -> None:
"""
Log results if it is better than any previous evaluation
"""
print()
current = frame_start + 1
for i, v in enumerate(f_val):
is_best = self.is_best_loss(v, self.current_best_loss)
current = frame_start + i + 1
v['is_best'] = is_best
v['current_epoch'] = current
v['is_initial_point'] = current <= self.n_initial_points
logger.debug(f"Optimizer epoch evaluated: {v}")
if is_best:
self.current_best_loss = v['loss']
self.update_max_epoch(v, current)
self.print_results(v)
self.trials.append(v)
# Save results after every batch
self.save_trials()
# give up if no best since max epochs
if current + 1 > (total_epochs or self.max_epoch):
self.max_epoch_reached = True
@staticmethod
def load_previous_results(trials_file: Path) -> List:
"""
Load data for epochs from the file if we have one
"""
trials: List = []
if trials_file.is_file() and trials_file.stat().st_size > 0:
trials = Hyperopt._read_trials(trials_file)
if trials[0].get('is_best') is None:
raise OperationalException(
"The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
return trials
def _set_random_state(self, random_state: Optional[int]) -> int:
return random_state or random.randint(1, 2**16 - 1)
@staticmethod
def calc_epochs(dimensions: List[Dimension], config_jobs: int, effort: int, total_epochs: int):
""" Compute a reasonable number of initial points and
a minimum number of epochs to evaluate """
n_dimensions = len(dimensions)
n_parameters = 0
# sum all the dimensions discretely, granting minimum values
for d in dimensions:
if type(d).__name__ == 'Integer':
n_parameters += max(1, d.high - d.low)
elif type(d).__name__ == 'Real':
n_parameters += max(10, int(d.high - d.low))
else:
n_parameters += len(d.bounds)
# guess the size of the search space as the count of the
# unordered combination of the dimensions entries
search_space_size = (factorial(n_parameters) /
(factorial(n_parameters - n_dimensions) * factorial(n_dimensions)))
# logger.info(f'Search space size: {search_space_size}')
if search_space_size < config_jobs:
# don't waste if the space is small
n_initial_points = config_jobs
elif total_epochs > 0:
n_initial_points = total_epochs // 3 if total_epochs > config_jobs * 3 else config_jobs
min_epochs = n_initial_points
else:
# extract coefficients from the search space and the jobs count
log_sss = int(log(search_space_size, 10))
log_jobs = int(log(config_jobs, 2)) if config_jobs > 4 else 2
jobs_ip = log_jobs * log_sss
# never waste
n_initial_points = log_sss if jobs_ip > search_space_size else jobs_ip
# it shall run for this much, I say
min_epochs = int(max(2 * n_initial_points, 3 * config_jobs) * (1 + effort / 10))
return n_initial_points, min_epochs, search_space_size
def update_max_epoch(self, val: Dict, current: int):
""" calculate max epochs: store the number of non best epochs
between each best, and get the mean of that value """
if val['is_initial_point'] is not True:
self.epochs_since_last_best.append(current - self.current_best_epoch)
self.avg_best_occurrence = (sum(self.epochs_since_last_best) //
len(self.epochs_since_last_best))
self.current_best_epoch = current
self.max_epoch = int(
(self.current_best_epoch + self.avg_best_occurrence + self.min_epochs) *
(1 + self.effort / 10))
if self.max_epoch > self.search_space_size:
self.max_epoch = self.search_space_size
print()
logger.info(f'Max epochs set to: {self.max_epoch}')
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
data, timerange = self.backtesting.load_bt_data()
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = get_timerange(data)
logger.info('Hyperopting with data from %s up to %s (%s days)..', min_date.isoformat(),
max_date.isoformat(), (max_date - min_date).days)
dump(preprocessed, self.tickerdata_pickle)
# We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange = None # type: ignore
self.trials = self.load_previous_results(self.trials_file)
cpus = cpu_count()
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}')
self.dimensions: List[Dimension] = self.hyperopt_space()
self.n_initial_points, self.min_epochs, self.search_space_size = self.calc_epochs(
self.dimensions, config_jobs, self.effort, self.total_epochs)
logger.info(f"Min epochs set to: {self.min_epochs}")
if self.total_epochs < 1:
self.max_epoch = int(self.min_epochs + len(self.trials))
else:
self.max_epoch = self.n_initial_points
self.avg_best_occurrence = self.min_epochs
logger.info(f'Initial points: {self.n_initial_points}')
self.opt = self.get_optimizer(self.dimensions, config_jobs, self.n_initial_points)
if self.print_colorized:
colorama_init(autoreset=True)
try:
register_parallel_backend('custom', CustomImmediateResultBackend)
with parallel_backend('custom'):
with Parallel(n_jobs=config_jobs, verbose=0) as parallel:
while True:
# update epochs count
epochs_so_far = len(self.trials)
# pad the frame length to the number of jobs to avoid desaturation
frame_len = (self.avg_best_occurrence + config_jobs -
self.avg_best_occurrence % config_jobs)
# don't go over the limit
if epochs_so_far + frame_len > (self.total_epochs or self.max_epoch):
frame_len = (self.total_epochs or self.max_epoch) - epochs_so_far
print(
f"{epochs_so_far+1}-{epochs_so_far+frame_len}"
f"/{self.total_epochs}: ",
end='')
f_val = self.run_optimizer_parallel(parallel, frame_len, epochs_so_far,
config_jobs)
self.log_results(f_val, epochs_so_far, self.total_epochs or self.max_epoch)
if self.max_epoch_reached:
logger.info("Max epoch reached, terminating.")
break
except KeyboardInterrupt:
print("User interrupted..")
self.save_trials(final=True)
if self.trials:
sorted_trials = sorted(self.trials, key=itemgetter('loss'))
results = sorted_trials[0]
self.print_epoch_details(results, self.max_epoch, self.print_json)
else:
# This is printed when Ctrl+C is pressed quickly, before first epochs have
# a chance to be evaluated.
print("No epochs evaluated yet, no best result.")
def __getstate__(self):
state = self.__dict__.copy()
del state['trials']
return state