330 lines
14 KiB
Python
330 lines
14 KiB
Python
import logging
|
|
from datetime import datetime, timezone
|
|
from typing import Any, Dict, Optional
|
|
|
|
import numpy as np
|
|
# for spice rack
|
|
import pandas as pd
|
|
import talib.abstract as ta
|
|
from scipy.signal import argrelextrema
|
|
from technical import qtpylib
|
|
|
|
from freqtrade.configuration import TimeRange
|
|
from freqtrade.constants import Config
|
|
from freqtrade.data.dataprovider import DataProvider
|
|
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
|
from freqtrade.exceptions import OperationalException
|
|
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
|
from freqtrade.exchange.exchange import market_is_active
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist
|
|
from freqtrade.strategy import merge_informative_pair
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def download_all_data_for_training(dp: DataProvider, config: Config) -> None:
|
|
"""
|
|
Called only once upon start of bot to download the necessary data for
|
|
populating indicators and training the model.
|
|
:param timerange: TimeRange = The full data timerange for populating the indicators
|
|
and training the model.
|
|
:param dp: DataProvider instance attached to the strategy
|
|
"""
|
|
|
|
if dp._exchange is None:
|
|
raise OperationalException('No exchange object found.')
|
|
markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
|
|
or config.get('include_inactive')]
|
|
|
|
all_pairs = dynamic_expand_pairlist(config, markets)
|
|
|
|
timerange = get_required_data_timerange(config)
|
|
|
|
new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
|
|
|
|
refresh_backtest_ohlcv_data(
|
|
dp._exchange,
|
|
pairs=all_pairs,
|
|
timeframes=config["freqai"]["feature_parameters"].get("include_timeframes"),
|
|
datadir=config["datadir"],
|
|
timerange=timerange,
|
|
new_pairs_days=new_pairs_days,
|
|
erase=False,
|
|
data_format=config.get("dataformat_ohlcv", "json"),
|
|
trading_mode=config.get("trading_mode", "spot"),
|
|
prepend=config.get("prepend_data", False),
|
|
)
|
|
|
|
|
|
def get_required_data_timerange(config: Config) -> TimeRange:
|
|
"""
|
|
Used to compute the required data download time range
|
|
for auto data-download in FreqAI
|
|
"""
|
|
time = datetime.now(tz=timezone.utc).timestamp()
|
|
|
|
timeframes = config["freqai"]["feature_parameters"].get("include_timeframes")
|
|
|
|
max_tf_seconds = 0
|
|
for tf in timeframes:
|
|
secs = timeframe_to_seconds(tf)
|
|
if secs > max_tf_seconds:
|
|
max_tf_seconds = secs
|
|
|
|
startup_candles = config.get('startup_candle_count', 0)
|
|
indicator_periods = config["freqai"]["feature_parameters"]["indicator_periods_candles"]
|
|
|
|
# factor the max_period as a factor of safety.
|
|
max_period = int(max(startup_candles, max(indicator_periods)) * 1.5)
|
|
config['startup_candle_count'] = max_period
|
|
logger.info(f'FreqAI auto-downloader using {max_period} startup candles.')
|
|
|
|
additional_seconds = max_period * max_tf_seconds
|
|
|
|
startts = int(
|
|
time
|
|
- config["freqai"].get("train_period_days", 0) * 86400
|
|
- additional_seconds
|
|
)
|
|
stopts = int(time)
|
|
data_load_timerange = TimeRange('date', 'date', startts, stopts)
|
|
|
|
return data_load_timerange
|
|
|
|
|
|
def auto_populate_any_indicators(
|
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
):
|
|
"""
|
|
This is a premade `populate_any_indicators()` function which is set in
|
|
the user strategy is they enable `freqai_spice_rack: true` in their
|
|
configuration file.
|
|
"""
|
|
|
|
coin = pair.split('/')[0]
|
|
|
|
if informative is None:
|
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
|
|
|
# first loop is automatically duplicating indicators for time periods
|
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
|
|
t = int(t)
|
|
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
|
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
|
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
|
|
|
bollinger = qtpylib.bollinger_bands(
|
|
qtpylib.typical_price(informative), window=t, stds=2.2
|
|
)
|
|
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
|
|
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
|
|
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
|
|
|
|
informative[f"%-{coin}bb_width-period_{t}"] = (
|
|
informative[f"{coin}bb_upperband-period_{t}"]
|
|
- informative[f"{coin}bb_lowerband-period_{t}"]
|
|
) / informative[f"{coin}bb_middleband-period_{t}"]
|
|
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
|
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
|
)
|
|
|
|
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
|
|
|
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
|
)
|
|
|
|
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
|
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
|
informative[f"%-{coin}raw_price"] = informative["close"]
|
|
|
|
indicators = [col for col in informative if col.startswith("%")]
|
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
if n == 0:
|
|
continue
|
|
informative_shift = informative[indicators].shift(n)
|
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
informative = pd.concat((informative, informative_shift), axis=1)
|
|
|
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
skip_columns = [
|
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
]
|
|
df = df.drop(columns=skip_columns)
|
|
if set_generalized_indicators:
|
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
|
df["&s-minima"] = 0
|
|
df["&s-maxima"] = 0
|
|
min_peaks = argrelextrema(df["close"].values, np.less, order=80)
|
|
max_peaks = argrelextrema(df["close"].values, np.greater, order=80)
|
|
for mp in min_peaks[0]:
|
|
df.at[mp, "&s-minima"] = 1
|
|
for mp in max_peaks[0]:
|
|
df.at[mp, "&s-maxima"] = 1
|
|
|
|
return df
|
|
|
|
|
|
def setup_freqai_spice_rack(config: dict, exchange: Optional[Exchange]) -> Dict[str, Any]:
|
|
import difflib
|
|
import json
|
|
from pathlib import Path
|
|
auto_config = config.get('freqai_config', 'lightgbm_config.json')
|
|
with open(Path(__file__).parent / Path('spice_rack') / auto_config) as json_file:
|
|
freqai_config = json.load(json_file)
|
|
config['freqai'] = freqai_config['freqai']
|
|
config['freqai']['identifier'] = config['freqai_identifier']
|
|
corr_pairs = config['freqai']['feature_parameters']['include_corr_pairlist']
|
|
timeframes = config['freqai']['feature_parameters']['include_timeframes']
|
|
new_corr_pairs = []
|
|
new_tfs = []
|
|
|
|
if not exchange:
|
|
logger.warning('No dataprovider available.')
|
|
config['freqai']['enabled'] = False
|
|
return config
|
|
# find the closest pairs to what the default config wants
|
|
for pair in corr_pairs:
|
|
closest_pair = difflib.get_close_matches(
|
|
pair,
|
|
exchange.markets
|
|
)
|
|
if not closest_pair:
|
|
logger.warning(f'Could not find {pair} in markets, removing from '
|
|
f'corr_pairlist.')
|
|
else:
|
|
closest_pair = closest_pair[0]
|
|
|
|
new_corr_pairs.append(closest_pair)
|
|
logger.info(f'Spice rack will use {closest_pair} as informative in FreqAI model.')
|
|
|
|
# find the closest matching timeframes to what the default config wants
|
|
if timeframe_to_seconds(config['timeframe']) > timeframe_to_seconds('15m'):
|
|
logger.warning('Default spice rack is designed for lower base timeframes (e.g. > '
|
|
f'15m). But user passed {config["timeframe"]}.')
|
|
new_tfs.append(config['timeframe'])
|
|
|
|
list_tfs = [timeframe_to_seconds(tf) for tf
|
|
in exchange.timeframes]
|
|
for tf in timeframes:
|
|
tf_secs = timeframe_to_seconds(tf)
|
|
closest_index = min(range(len(list_tfs)), key=lambda i: abs(list_tfs[i] - tf_secs))
|
|
closest_tf = exchange.timeframes[closest_index]
|
|
logger.info(f'Spice rack will use {closest_tf} as informative tf in FreqAI model.')
|
|
new_tfs.append(closest_tf)
|
|
|
|
config['freqai']['feature_parameters'].update({'include_timeframes': new_tfs})
|
|
config['freqai']['feature_parameters'].update({'include_corr_pairlist': new_corr_pairs})
|
|
config.update({"freqaimodel": 'LightGBMRegressorMultiTarget'})
|
|
return config
|
|
|
|
# Keep below for when we wish to download heterogeneously lengthed data for FreqAI.
|
|
# def download_all_data_for_training(dp: DataProvider, config: Config) -> None:
|
|
# """
|
|
# Called only once upon start of bot to download the necessary data for
|
|
# populating indicators and training a FreqAI model.
|
|
# :param timerange: TimeRange = The full data timerange for populating the indicators
|
|
# and training the model.
|
|
# :param dp: DataProvider instance attached to the strategy
|
|
# """
|
|
|
|
# if dp._exchange is not None:
|
|
# markets = [p for p, m in dp._exchange.markets.items() if market_is_active(m)
|
|
# or config.get('include_inactive')]
|
|
# else:
|
|
# # This should not occur:
|
|
# raise OperationalException('No exchange object found.')
|
|
|
|
# all_pairs = dynamic_expand_pairlist(config, markets)
|
|
|
|
# if not dp._exchange:
|
|
# # Not realistic - this is only called in live mode.
|
|
# raise OperationalException("Dataprovider did not have an exchange attached.")
|
|
|
|
# time = datetime.now(tz=timezone.utc).timestamp()
|
|
|
|
# for tf in config["freqai"]["feature_parameters"].get("include_timeframes"):
|
|
# timerange = TimeRange()
|
|
# timerange.startts = int(time)
|
|
# timerange.stopts = int(time)
|
|
# startup_candles = dp.get_required_startup(str(tf))
|
|
# tf_seconds = timeframe_to_seconds(str(tf))
|
|
# timerange.subtract_start(tf_seconds * startup_candles)
|
|
# new_pairs_days = int((timerange.stopts - timerange.startts) / 86400)
|
|
# # FIXME: now that we are looping on `refresh_backtest_ohlcv_data`, the function
|
|
# # redownloads the funding rate for each pair.
|
|
# refresh_backtest_ohlcv_data(
|
|
# dp._exchange,
|
|
# pairs=all_pairs,
|
|
# timeframes=[tf],
|
|
# datadir=config["datadir"],
|
|
# timerange=timerange,
|
|
# new_pairs_days=new_pairs_days,
|
|
# erase=False,
|
|
# data_format=config.get("dataformat_ohlcv", "json"),
|
|
# trading_mode=config.get("trading_mode", "spot"),
|
|
# prepend=config.get("prepend_data", False),
|
|
# )
|
|
|
|
|
|
def plot_feature_importance(model: Any, pair: str, dk: FreqaiDataKitchen,
|
|
count_max: int = 25) -> None:
|
|
"""
|
|
Plot Best and worst features by importance for a single sub-train.
|
|
:param model: Any = A model which was `fit` using a common library
|
|
such as catboost or lightgbm
|
|
:param pair: str = pair e.g. BTC/USD
|
|
:param dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
|
|
:param count_max: int = the amount of features to be loaded per column
|
|
"""
|
|
from freqtrade.plot.plotting import go, make_subplots, store_plot_file
|
|
|
|
# Extract feature importance from model
|
|
models = {}
|
|
if 'FreqaiMultiOutputRegressor' in str(model.__class__):
|
|
for estimator, label in zip(model.estimators_, dk.label_list):
|
|
models[label] = estimator
|
|
else:
|
|
models[dk.label_list[0]] = model
|
|
|
|
for label in models:
|
|
mdl = models[label]
|
|
if "catboost.core" in str(mdl.__class__):
|
|
feature_importance = mdl.get_feature_importance()
|
|
elif "lightgbm.sklearn" or "xgb" in str(mdl.__class__):
|
|
feature_importance = mdl.feature_importances_
|
|
else:
|
|
logger.info('Model type not support for generating feature importances.')
|
|
return
|
|
|
|
# Data preparation
|
|
fi_df = pd.DataFrame({
|
|
"feature_names": np.array(dk.data_dictionary['train_features'].columns),
|
|
"feature_importance": np.array(feature_importance)
|
|
})
|
|
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
|
|
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
|
|
|
|
# Plotting
|
|
def add_feature_trace(fig, fi_df, col):
|
|
return fig.add_trace(
|
|
go.Bar(
|
|
x=fi_df["feature_importance"],
|
|
y=fi_df["feature_names"],
|
|
orientation='h', showlegend=False
|
|
), row=1, col=col
|
|
)
|
|
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
|
|
fig = add_feature_trace(fig, fi_df_top, 1)
|
|
fig = add_feature_trace(fig, fi_df_worst, 2)
|
|
fig.update_layout(title_text=f"Best and worst features by importance {pair}")
|
|
label = label.replace('&', '').replace('%', '') # escape two FreqAI specific characters
|
|
store_plot_file(fig, f"{dk.model_filename}-{label}.html", dk.data_path)
|