stable/user_data/hyperopts/examplefreqtrade2opt.py
2021-02-07 23:09:53 +01:00

282 lines
11 KiB
Python

# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
# --- Do not remove these libs ---
from functools import reduce
from typing import Any, Callable, Dict, List
import numpy # noqa
import pandas # noqa
from pandas import DataFrame
from skopt.space import Categorical, Dimension, Integer, Real # noqa
from freqtrade.optimize.hyperopt_interface import IHyperOpt
# --------------------------------
# Add your lib to import here
import talib.abstract as ta # noqa
import freqtrade.vendor.qtpylib.indicators as qtpylib
class Examplestrategy2opt(IHyperOpt):
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
# Stoch
stoch = ta.STOCH(dataframe)
dataframe['slowk'] = stoch['slowk']
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
rsi = 0.1 * (dataframe['rsi'] - 50)
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
# Bollinger bands
bollinger1 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=1)
dataframe['bb_lowerband1'] = bollinger1['lower']
dataframe['bb_middleband'] = bollinger1['mid']
dataframe['bb_upperband1'] = bollinger1['upper']
bollinger2 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband2'] = bollinger2['lower']
dataframe['bb_upperband2'] = bollinger2['upper']
bollinger3 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=3)
dataframe['bb_lowerband3'] = bollinger3['lower']
dataframe['bb_upperband3'] = bollinger3['upper']
bollinger4 = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=4)
dataframe['bb_lowerband4'] = bollinger4['lower']
dataframe['bb_upperband4'] = bollinger4['upper']
# SAR Parabol
dataframe['sar'] = ta.SAR(dataframe)
# Hammer: values [0, 100]
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by Hyperopt.
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if params.get('rsi-enabled'):
conditions.append(dataframe['rsi'] < params['rsi-value'])
if params.get('slowk-enabled'):
conditions.append(dataframe['slowk'] < params['slowk-value'])
if params.get('Hammer-enabled'):
conditions.append(dataframe['CDLHAMMER'] < params['Hammer-value'])
# TRIGGERS
if 'trigger' in params:
if params['trigger'] == 'bb_lower1':
conditions.append(dataframe['close'] < dataframe['bb_lowerband1'])
if params['trigger'] == 'bb_lower2':
conditions.append(dataframe['close'] < dataframe['bb_lowerband2'])
if params['trigger'] == 'bb_lower3':
conditions.append(dataframe['close'] < dataframe['bb_lowerband3'])
if params['trigger'] == 'bb_lower4':
conditions.append(dataframe['close'] < dataframe['bb_lowerband4'])
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching buy strategy parameters.
"""
return [
Integer(0, 100, name='slowk-value'),
Integer(20, 80, name='rsi-value'),
Integer(0, 100, name='Hammer-value'),
Categorical([True, False], name='slowk-enabled'),
Categorical([True, False], name='rsi-enabled'),
Categorical([True, False], name='Hammer-enabled'),
Categorical(['bb_lower1', 'bb_lower2', 'bb_lower3', 'bb_lower4'], name='trigger')
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by Hyperopt.
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use.
"""
conditions = []
# GUARDS AND TRENDS
if params.get('sell-fisher-enabled'):
conditions.append(dataframe['fisher_rsi'] > params['sell-fisher-value'])
# TRIGGERS
if 'sell-trigger' in params:
if params['sell-trigger'] == 'sell-bb_middle':
conditions.append(dataframe['close'] > dataframe['bb_middleband'])
if params['sell-trigger'] == 'sell-bb_upper1':
conditions.append(dataframe['close'] > dataframe['bb_upperband1'])
if params['sell-trigger'] == 'sell-bb_upper2':
conditions.append(dataframe['close'] > dataframe['bb_upperband2'])
if params['sell-trigger'] == 'sell-bb_upper3':
conditions.append(dataframe['close'] > dataframe['bb_upperband3'])
if params['sell-trigger'] == 'sell-bb_upper4':
conditions.append(dataframe['close'] > dataframe['bb_upperband4'])
if params['sell-trigger'] == 'sell-sar':
conditions.append(dataframe['close'] < dataframe['sar'])
# Check that the candle had volume
conditions.append(dataframe['volume'] > 0)
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters.
"""
return [
Integer(-1.0, 1.0, name='sell-fisher-value'),
Categorical([True, False], name='sell-fisher-enabled'),
Categorical(['sell-sar'
'sell-bb_middle',
'sell-bb_upper1',
'sell-bb_upper2',
'sell-bb_upper3',
'sell-bb_upper4', ], name='sell-trigger')
]
@staticmethod
def generate_roi_table(params: Dict) -> Dict[int, float]:
"""
Generate the ROI table that will be used by Hyperopt
This implementation generates the default legacy Freqtrade ROI tables.
Change it if you need different number of steps in the generated
ROI tables or other structure of the ROI tables.
Please keep it aligned with parameters in the 'roi' optimization
hyperspace defined by the roi_space method.
"""
roi_table = {}
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table
@staticmethod
def roi_space() -> List[Dimension]:
"""
Values to search for each ROI steps
Override it if you need some different ranges for the parameters in the
'roi' optimization hyperspace.
Please keep it aligned with the implementation of the
generate_roi_table method.
"""
return [
Integer(10, 120, name='roi_t1'),
Integer(10, 60, name='roi_t2'),
Integer(10, 40, name='roi_t3'),
Real(0.01, 0.04, name='roi_p1'),
Real(0.01, 0.07, name='roi_p2'),
Real(0.01, 0.20, name='roi_p3'),
]
@staticmethod
def stoploss_space() -> List[Dimension]:
"""
Stoploss Value to search
Override it if you need some different range for the parameter in the
'stoploss' optimization hyperspace.
"""
return [
Real(-0.35, -0.02, name='stoploss'),
]
@staticmethod
def trailing_space() -> List[Dimension]:
"""
Create a trailing stoploss space.
You may override it in your custom Hyperopt class.
"""
return [
# It was decided to always set trailing_stop is to True if the 'trailing' hyperspace
# is used. Otherwise hyperopt will vary other parameters that won't have effect if
# trailing_stop is set False.
# This parameter is included into the hyperspace dimensions rather than assigning
# it explicitly in the code in order to have it printed in the results along with
# other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'),
Real(0.01, 0.35, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['rsi'] < 30) &
(dataframe['slowk'] < 20) &
(dataframe['bb_lowerband'] > dataframe['close']) &
(dataframe['CDLHAMMER'] == 100)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
(dataframe['sar'] > dataframe['close']) &
(dataframe['fisher_rsi'] > 0.3)
),
'sell'] = 1
return dataframe