stable/freqtrade/freqai/freqai_interface.py

576 lines
24 KiB
Python

# import contextlib
import copy
import datetime
import gc
import logging
import shutil
import threading
import time
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Dict, Tuple
import numpy as np
import numpy.typing as npt
import pandas as pd
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.enums import RunMode
from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.strategy.interface import IStrategy
pd.options.mode.chained_assignment = None
logger = logging.getLogger(__name__)
def threaded(fn):
def wrapper(*args, **kwargs):
threading.Thread(target=fn, args=args, kwargs=kwargs).start()
return wrapper
class IFreqaiModel(ABC):
"""
Class containing all tools for training and prediction in the strategy.
User models should inherit from this class as shown in
templates/ExamplePredictionModel.py where the user overrides
train(), predict(), fit(), and make_labels().
Author: Robert Caulk, rob.caulk@gmail.com
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.assert_config(self.config)
self.freqai_info = config["freqai"]
self.data_split_parameters = config.get("freqai", {}).get("data_split_parameters")
self.model_training_parameters = config.get("freqai", {}).get("model_training_parameters")
self.feature_parameters = config.get("freqai", {}).get("feature_parameters")
self.time_last_trained = None
self.current_time = None
self.model = None
self.predictions = None
self.training_on_separate_thread = False
self.retrain = False
self.first = True
self.update_historic_data = 0
self.set_full_path()
self.follow_mode = self.freqai_info.get("follow_mode", False)
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
self.lock = threading.Lock()
self.follow_mode = self.freqai_info.get("follow_mode", False)
self.identifier = self.freqai_info.get("identifier", "no_id_provided")
self.scanning = False
self.ready_to_scan = False
self.first = True
self.keras = self.freqai_info.get("keras", False)
if self.keras and self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
self.freqai_info["feature_parameters"]["DI_threshold"] = 0
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
def assert_config(self, config: Dict[str, Any]) -> None:
if not config.get("freqai", {}):
raise OperationalException("No freqai parameters found in configuration file.")
def start(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> DataFrame:
"""
Entry point to the FreqaiModel from a specific pair, it will train a new model if
necessary before making the prediction.
:params:
:dataframe: Full dataframe coming from strategy - it contains entire
backtesting timerange + additional historical data necessary to train
the model.
:metadata: pair metadata coming from strategy.
"""
self.live = strategy.dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
self.dd.set_pair_dict_info(metadata)
if self.live:
self.dk = FreqaiDataKitchen(self.config, self.dd, self.live, metadata["pair"])
dk = self.start_live(dataframe, metadata, strategy, self.dk)
# For backtesting, each pair enters and then gets trained for each window along the
# sliding window defined by "train_period_days" (training window) and "live_retrain_hours"
# (backtest window, i.e. window immediately following the training window).
# FreqAI slides the window and sequentially builds the backtesting results before returning
# the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode:
self.dk = FreqaiDataKitchen(self.config, self.dd, self.live, metadata["pair"])
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
dk = self.start_backtesting(dataframe, metadata, self.dk)
dataframe = self.remove_features_from_df(dk.return_dataframe)
return self.return_values(dataframe, dk)
@threaded
def start_scanning(self, strategy: IStrategy) -> None:
"""
Function designed to constantly scan pairs for retraining on a separate thread (intracandle)
to improve model youth. This function is agnostic to data preparation/collection/storage,
it simply trains on what ever data is available in the self.dd.
:params:
strategy: IStrategy = The user defined strategy class
"""
while 1:
time.sleep(1)
for pair in self.config.get("exchange", {}).get("pair_whitelist"):
(_, trained_timestamp, _, _) = self.dd.get_pair_dict_info(pair)
if self.dd.pair_dict[pair]["priority"] != 1:
continue
dk = FreqaiDataKitchen(self.config, self.dd, self.live, pair)
dk.set_paths(pair, trained_timestamp)
(
retrain,
new_trained_timerange,
data_load_timerange,
) = dk.check_if_new_training_required(trained_timestamp)
dk.set_paths(pair, new_trained_timerange.stopts)
if retrain:
self.train_model_in_series(
new_trained_timerange, pair, strategy, dk, data_load_timerange
)
def start_backtesting(
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
The main broad execution for backtesting. For backtesting, each pair enters and then gets
trained for each window along the sliding window defined by "train_period_days"
(training window) and "backtest_period_days" (backtest window, i.e. window immediately
following the training window). FreqAI slides the window and sequentially builds
the backtesting results before returning the concatenated results for the full
backtesting period back to the strategy.
:params:
dataframe: DataFrame = strategy passed dataframe
metadata: Dict = pair metadata
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
:returns:
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
"""
# Loop enforcing the sliding window training/backtesting paradigm
# tr_train is the training time range e.g. 1 historical month
# tr_backtest is the backtesting time range e.g. the week directly
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
(_, _, _, _) = self.dd.get_pair_dict_info(metadata["pair"])
gc.collect()
dk.data = {} # clean the pair specific data between training window sliding
self.training_timerange = tr_train
# self.training_timerange_timerange = tr_train
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
trained_timestamp = tr_train # TimeRange.parse_timerange(tr_train)
tr_train_startts_str = datetime.datetime.utcfromtimestamp(tr_train.startts).strftime(
"%Y-%m-%d %H:%M:%S"
)
tr_train_stopts_str = datetime.datetime.utcfromtimestamp(tr_train.stopts).strftime(
"%Y-%m-%d %H:%M:%S"
)
logger.info("Training %s", metadata["pair"])
logger.info(f"Training {tr_train_startts_str} to {tr_train_stopts_str}")
dk.data_path = Path(
dk.full_path
/ str(
"sub-train"
+ "-"
+ metadata["pair"].split("/")[0]
+ str(int(trained_timestamp.stopts))
)
)
if not self.model_exists(
metadata["pair"], dk, trained_timestamp=trained_timestamp.stopts
):
dk.find_features(dataframe_train)
self.model = self.train(dataframe_train, metadata["pair"], dk)
self.dd.pair_dict[metadata["pair"]]["trained_timestamp"] = trained_timestamp.stopts
dk.set_new_model_names(metadata["pair"], trained_timestamp)
dk.save_data(self.model, metadata["pair"])
else:
self.model = dk.load_data(metadata["pair"])
self.check_if_feature_list_matches_strategy(dataframe_train, dk)
pred_df, do_preds = self.predict(dataframe_backtest, dk)
dk.append_predictions(pred_df, do_preds, len(dataframe_backtest))
dk.fill_predictions(dataframe)
return dk
def start_live(
self, dataframe: DataFrame, metadata: dict, strategy: IStrategy, dk: FreqaiDataKitchen
) -> FreqaiDataKitchen:
"""
The main broad execution for dry/live. This function will check if a retraining should be
performed, and if so, retrain and reset the model.
:params:
dataframe: DataFrame = strategy passed dataframe
metadata: Dict = pair metadata
strategy: IStrategy = currently employed strategy
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
:returns:
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
"""
# update follower
if self.follow_mode:
self.dd.update_follower_metadata()
# get the model metadata associated with the current pair
(_, trained_timestamp, _, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
# if the metadata doesnt exist, the follower returns null arrays to strategy
if self.follow_mode and return_null_array:
logger.info("Returning null array from follower to strategy")
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
# append the historic data once per round
if self.dd.historic_data:
dk.update_historic_data(strategy)
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
# if trainable, check if model needs training, if so compute new timerange,
# then save model and metadata.
# if not trainable, load existing data
if not self.follow_mode:
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
trained_timestamp
)
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
# download candle history if it is not already in memory
if not self.dd.historic_data:
logger.info(
"Downloading all training data for all pairs in whitelist and "
"corr_pairlist, this may take a while if you do not have the "
"data saved"
)
dk.download_all_data_for_training(data_load_timerange)
dk.load_all_pair_histories(data_load_timerange)
if not self.scanning:
self.scanning = True
self.start_scanning(strategy)
elif self.follow_mode:
dk.set_paths(metadata["pair"], trained_timestamp)
logger.info(
"FreqAI instance set to follow_mode, finding existing pair"
f"using { self.identifier }"
)
# load the model and associated data into the data kitchen
self.model = dk.load_data(coin=metadata["pair"])
if not self.model:
logger.warning(
f"No model ready for {metadata['pair']}, returning null values to strategy."
)
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
# ensure user is feeding the correct indicators to the model
self.check_if_feature_list_matches_strategy(dataframe, dk)
self.build_strategy_return_arrays(dataframe, dk, metadata["pair"], trained_timestamp)
return dk
def build_strategy_return_arrays(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, pair: str, trained_timestamp: int
) -> None:
# hold the historical predictions in memory so we are sending back
# correct array to strategy
if pair not in self.dd.model_return_values:
pred_df, do_preds = self.predict(dataframe, dk)
self.dd.set_initial_return_values(pair, dk, pred_df, do_preds)
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
return
elif self.dk.check_if_model_expired(trained_timestamp):
pred_df = DataFrame(np.zeros((2, len(dk.label_list))), columns=dk.label_list)
do_preds, dk.DI_values = np.ones(2) * 2, np.zeros(2)
logger.warning(
f"Model expired for {pair}, returning null values to strategy. Strategy "
"construction should take care to consider this event with "
"prediction == 0 and do_predict == 2"
)
else:
# Only feed in the most recent candle for prediction in live scenario
pred_df, do_preds = self.predict(dataframe.iloc[-self.CONV_WIDTH:], dk, first=False)
self.dd.append_model_predictions(pair, pred_df, do_preds, dk, len(dataframe))
dk.return_dataframe = self.dd.attach_return_values_to_return_dataframe(pair, dataframe)
return
def check_if_feature_list_matches_strategy(
self, dataframe: DataFrame, dk: FreqaiDataKitchen
) -> None:
"""
Ensure user is passing the proper feature set if they are reusing an `identifier` pointing
to a folder holding existing models.
:params:
dataframe: DataFrame = strategy provided dataframe
dk: FreqaiDataKitchen = non-persistent data container/analyzer for current coin/bot loop
"""
dk.find_features(dataframe)
if "training_features_list_raw" in dk.data:
feature_list = dk.data["training_features_list_raw"]
else:
feature_list = dk.training_features_list
if dk.training_features_list != feature_list:
raise OperationalException(
"Trying to access pretrained model with `identifier` "
"but found different features furnished by current strategy."
"Change `identifer` to train from scratch, or ensure the"
"strategy is furnishing the same features as the pretrained"
"model"
)
def data_cleaning_train(self, dk: FreqaiDataKitchen) -> None:
"""
Base data cleaning method for train
Any function inside this method should drop training data points from the filtered_dataframe
based on user decided logic. See FreqaiDataKitchen::remove_outliers() for an example
of how outlier data points are dropped from the dataframe used for training.
"""
if self.freqai_info.get("feature_parameters", {}).get(
"principal_component_analysis", False
):
dk.principal_component_analysis()
if self.freqai_info.get("feature_parameters", {}).get("use_SVM_to_remove_outliers", False):
dk.use_SVM_to_remove_outliers(predict=False)
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
dk.data["avg_mean_dist"] = dk.compute_distances()
# if self.feature_parameters["determine_statistical_distributions"]:
# dk.determine_statistical_distributions()
# if self.feature_parameters["remove_outliers"]:
# dk.remove_outliers(predict=False)
def data_cleaning_predict(self, dk: FreqaiDataKitchen, dataframe: DataFrame) -> None:
"""
Base data cleaning method for predict.
These functions each modify dk.do_predict, which is a dataframe with equal length
to the number of candles coming from and returning to the strategy. Inside do_predict,
1 allows prediction and < 0 signals to the strategy that the model is not confident in
the prediction.
See FreqaiDataKitchen::remove_outliers() for an example
of how the do_predict vector is modified. do_predict is ultimately passed back to strategy
for buy signals.
"""
if self.freqai_info.get("feature_parameters", {}).get(
"principal_component_analysis", False
):
dk.pca_transform(dataframe)
if self.freqai_info.get("feature_parameters", {}).get("use_SVM_to_remove_outliers", False):
dk.use_SVM_to_remove_outliers(predict=True)
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
dk.check_if_pred_in_training_spaces()
# if self.feature_parameters["determine_statistical_distributions"]:
# dk.determine_statistical_distributions()
# if self.feature_parameters["remove_outliers"]:
# dk.remove_outliers(predict=True) # creates dropped index
def model_exists(
self,
pair: str,
dk: FreqaiDataKitchen,
trained_timestamp: int = None,
model_filename: str = "",
scanning: bool = False,
) -> bool:
"""
Given a pair and path, check if a model already exists
:param pair: pair e.g. BTC/USD
:param path: path to model
"""
coin, _ = pair.split("/")
if not self.live:
dk.model_filename = model_filename = "cb_" + coin.lower() + "_" + str(trained_timestamp)
path_to_modelfile = Path(dk.data_path / str(model_filename + "_model.joblib"))
file_exists = path_to_modelfile.is_file()
if file_exists and not scanning:
logger.info("Found model at %s", dk.data_path / dk.model_filename)
elif not scanning:
logger.info("Could not find model at %s", dk.data_path / dk.model_filename)
return file_exists
def set_full_path(self) -> None:
self.full_path = Path(
self.config["user_data_dir"] / "models" / str(self.freqai_info.get("identifier"))
)
self.full_path.mkdir(parents=True, exist_ok=True)
shutil.copy(
self.config["config_files"][0],
Path(self.full_path, Path(self.config["config_files"][0]).name),
)
def remove_features_from_df(self, dataframe: DataFrame) -> DataFrame:
"""
Remove the features from the dataframe before returning it to strategy. This keeps it
compact for Frequi purposes.
"""
to_keep = [
col for col in dataframe.columns if not col.startswith("%") or col.startswith("%%")
]
return dataframe[to_keep]
def train_model_in_series(
self,
new_trained_timerange: TimeRange,
pair: str,
strategy: IStrategy,
dk: FreqaiDataKitchen,
data_load_timerange: TimeRange,
):
"""
Retreive data and train model in single threaded mode (only used if model directory is empty
upon startup for dry/live )
:params:
new_trained_timerange: TimeRange = the timerange to train the model on
metadata: dict = strategy provided metadata
strategy: IStrategy = user defined strategy object
dk: FreqaiDataKitchen = non-persistent data container for current coin/loop
data_load_timerange: TimeRange = the amount of data to be loaded for populate_any_indicators
(larger than new_trained_timerange so that new_trained_timerange does not contain any NaNs)
"""
corr_dataframes, base_dataframes = dk.get_base_and_corr_dataframes(
data_load_timerange, pair
)
unfiltered_dataframe = dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, pair
)
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
# find the features indicated by strategy and store in datakitchen
dk.find_features(unfiltered_dataframe)
model = self.train(unfiltered_dataframe, pair, dk)
self.dd.pair_dict[pair]["trained_timestamp"] = new_trained_timerange.stopts
dk.set_new_model_names(pair, new_trained_timerange)
self.dd.pair_dict[pair]["first"] = False
if self.dd.pair_dict[pair]["priority"] == 1 and self.scanning:
with self.lock:
self.dd.pair_to_end_of_training_queue(pair)
dk.save_data(model, coin=pair)
if self.freqai_info.get("purge_old_models", False):
self.dd.purge_old_models()
# self.retrain = False
def set_initial_historic_predictions(
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
) -> None:
trained_predictions = model.predict(df)
pred_df = DataFrame(trained_predictions, columns=dk.label_list)
for label in dk.label_list:
pred_df[label] = (
(pred_df[label] + 1)
* (dk.data["labels_max"][label] - dk.data["labels_min"][label])
/ 2
) + dk.data["labels_min"][label]
self.dd.historic_predictions[pair] = pd.DataFrame()
self.dd.historic_predictions[pair] = copy.deepcopy(pred_df)
# Following methods which are overridden by user made prediction models.
# See freqai/prediction_models/CatboostPredictionModlel.py for an example.
@abstractmethod
def train(self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen) -> Any:
"""
Filter the training data and train a model to it. Train makes heavy use of the datahandler
for storing, saving, loading, and analyzing the data.
:params:
:unfiltered_dataframe: Full dataframe for the current training period
:metadata: pair metadata from strategy.
:returns:
:model: Trained model which can be used to inference (self.predict)
"""
@abstractmethod
def fit(self) -> Any:
"""
Most regressors use the same function names and arguments e.g. user
can drop in LGBMRegressor in place of CatBoostRegressor and all data
management will be properly handled by Freqai.
:params:
data_dictionary: Dict = the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
return
@abstractmethod
def predict(
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
) -> Tuple[DataFrame, npt.ArrayLike]:
"""
Filter the prediction features data and predict with it.
:param:
unfiltered_dataframe: Full dataframe for the current backtest period.
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
:return:
:predictions: np.array of predictions
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
data (NaNs) or felt uncertain about data (i.e. SVM and/or DI index)
"""
def make_labels(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
User defines the labels here (target values).
:params:
dataframe: DataFrame = the full dataframe for the present training period
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
"""
return
@abstractmethod
def return_values(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> DataFrame:
"""
User defines the dataframe to be returned to strategy here.
:params:
dataframe: DataFrame = the full dataframe for the current prediction (live)
or --timerange (backtesting)
dk: FreqaiDataKitchen = Data management/analysis tool assoicated to present pair only
:returns:
dataframe: DataFrame = dataframe filled with user defined data
"""
return