c2f6897d8b
Avoids code duplication in backtesting and plot_dataframe
477 lines
21 KiB
Python
477 lines
21 KiB
Python
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
|
|
|
"""
|
|
This module contains the backtesting logic
|
|
"""
|
|
import logging
|
|
from copy import deepcopy
|
|
from datetime import datetime, timedelta
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, NamedTuple, Optional
|
|
|
|
from pandas import DataFrame
|
|
from tabulate import tabulate
|
|
|
|
from freqtrade.arguments import Arguments
|
|
from freqtrade.data import history
|
|
from freqtrade.data.dataprovider import DataProvider
|
|
from freqtrade.exchange import timeframe_to_minutes
|
|
from freqtrade.misc import file_dump_json
|
|
from freqtrade.persistence import Trade
|
|
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
|
from freqtrade.state import RunMode
|
|
from freqtrade.strategy.interface import IStrategy, SellType
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BacktestResult(NamedTuple):
|
|
"""
|
|
NamedTuple Defining BacktestResults inputs.
|
|
"""
|
|
pair: str
|
|
profit_percent: float
|
|
profit_abs: float
|
|
open_time: datetime
|
|
close_time: datetime
|
|
open_index: int
|
|
close_index: int
|
|
trade_duration: float
|
|
open_at_end: bool
|
|
open_rate: float
|
|
close_rate: float
|
|
sell_reason: SellType
|
|
|
|
|
|
class Backtesting(object):
|
|
"""
|
|
Backtesting class, this class contains all the logic to run a backtest
|
|
|
|
To run a backtest:
|
|
backtesting = Backtesting(config)
|
|
backtesting.start()
|
|
"""
|
|
|
|
def __init__(self, config: Dict[str, Any]) -> None:
|
|
self.config = config
|
|
|
|
# Reset keys for backtesting
|
|
self.config['exchange']['key'] = ''
|
|
self.config['exchange']['secret'] = ''
|
|
self.config['exchange']['password'] = ''
|
|
self.config['exchange']['uid'] = ''
|
|
self.config['dry_run'] = True
|
|
self.strategylist: List[IStrategy] = []
|
|
|
|
exchange_name = self.config.get('exchange', {}).get('name').title()
|
|
self.exchange = ExchangeResolver(exchange_name, self.config).exchange
|
|
self.fee = self.exchange.get_fee()
|
|
|
|
if self.config.get('runmode') != RunMode.HYPEROPT:
|
|
self.dataprovider = DataProvider(self.config, self.exchange)
|
|
IStrategy.dp = self.dataprovider
|
|
|
|
if self.config.get('strategy_list', None):
|
|
# Force one interval
|
|
self.ticker_interval = str(self.config.get('ticker_interval'))
|
|
self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval)
|
|
for strat in list(self.config['strategy_list']):
|
|
stratconf = deepcopy(self.config)
|
|
stratconf['strategy'] = strat
|
|
self.strategylist.append(StrategyResolver(stratconf).strategy)
|
|
|
|
else:
|
|
# only one strategy
|
|
self.strategylist.append(StrategyResolver(self.config).strategy)
|
|
# Load one strategy
|
|
self._set_strategy(self.strategylist[0])
|
|
|
|
def _set_strategy(self, strategy):
|
|
"""
|
|
Load strategy into backtesting
|
|
"""
|
|
self.strategy = strategy
|
|
|
|
self.ticker_interval = self.config.get('ticker_interval')
|
|
self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval)
|
|
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
|
|
self.advise_buy = strategy.advise_buy
|
|
self.advise_sell = strategy.advise_sell
|
|
# Set stoploss_on_exchange to false for backtesting,
|
|
# since a "perfect" stoploss-sell is assumed anyway
|
|
# And the regular "stoploss" function would not apply to that case
|
|
self.strategy.order_types['stoploss_on_exchange'] = False
|
|
|
|
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame,
|
|
skip_nan: bool = False) -> str:
|
|
"""
|
|
Generates and returns a text table for the given backtest data and the results dataframe
|
|
:return: pretty printed table with tabulate as str
|
|
"""
|
|
stake_currency = str(self.config.get('stake_currency'))
|
|
max_open_trades = self.config.get('max_open_trades')
|
|
|
|
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
|
tabular_data = []
|
|
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
|
'tot profit ' + stake_currency, 'tot profit %', 'avg duration',
|
|
'profit', 'loss']
|
|
for pair in data:
|
|
result = results[results.pair == pair]
|
|
if skip_nan and result.profit_abs.isnull().all():
|
|
continue
|
|
|
|
tabular_data.append([
|
|
pair,
|
|
len(result.index),
|
|
result.profit_percent.mean() * 100.0,
|
|
result.profit_percent.sum() * 100.0,
|
|
result.profit_abs.sum(),
|
|
result.profit_percent.sum() * 100.0 / max_open_trades,
|
|
str(timedelta(
|
|
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
|
len(result[result.profit_abs > 0]),
|
|
len(result[result.profit_abs < 0])
|
|
])
|
|
|
|
# Append Total
|
|
tabular_data.append([
|
|
'TOTAL',
|
|
len(results.index),
|
|
results.profit_percent.mean() * 100.0,
|
|
results.profit_percent.sum() * 100.0,
|
|
results.profit_abs.sum(),
|
|
results.profit_percent.sum() * 100.0 / max_open_trades,
|
|
str(timedelta(
|
|
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
|
len(results[results.profit_abs > 0]),
|
|
len(results[results.profit_abs < 0])
|
|
])
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
|
return tabulate(tabular_data, headers=headers, # type: ignore
|
|
floatfmt=floatfmt, tablefmt="pipe")
|
|
|
|
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
|
"""
|
|
Generate small table outlining Backtest results
|
|
"""
|
|
tabular_data = []
|
|
headers = ['Sell Reason', 'Count']
|
|
for reason, count in results['sell_reason'].value_counts().iteritems():
|
|
tabular_data.append([reason.value, count])
|
|
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
|
|
|
def _generate_text_table_strategy(self, all_results: dict) -> str:
|
|
"""
|
|
Generate summary table per strategy
|
|
"""
|
|
stake_currency = str(self.config.get('stake_currency'))
|
|
max_open_trades = self.config.get('max_open_trades')
|
|
|
|
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
|
tabular_data = []
|
|
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
|
|
'tot profit ' + stake_currency, 'tot profit %', 'avg duration',
|
|
'profit', 'loss']
|
|
for strategy, results in all_results.items():
|
|
tabular_data.append([
|
|
strategy,
|
|
len(results.index),
|
|
results.profit_percent.mean() * 100.0,
|
|
results.profit_percent.sum() * 100.0,
|
|
results.profit_abs.sum(),
|
|
results.profit_percent.sum() * 100.0 / max_open_trades,
|
|
str(timedelta(
|
|
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
|
len(results[results.profit_abs > 0]),
|
|
len(results[results.profit_abs < 0])
|
|
])
|
|
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
|
return tabulate(tabular_data, headers=headers, # type: ignore
|
|
floatfmt=floatfmt, tablefmt="pipe")
|
|
|
|
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
|
|
strategyname: Optional[str] = None) -> None:
|
|
|
|
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
|
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
|
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
|
for index, t in results.iterrows()]
|
|
|
|
if records:
|
|
if strategyname:
|
|
# Inject strategyname to filename
|
|
recname = Path(recordfilename)
|
|
recordfilename = str(Path.joinpath(
|
|
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
|
|
logger.info('Dumping backtest results to %s', recordfilename)
|
|
file_dump_json(recordfilename, records)
|
|
|
|
def _get_ticker_list(self, processed) -> Dict[str, DataFrame]:
|
|
"""
|
|
Helper function to convert a processed tickerlist into a list for performance reasons.
|
|
|
|
Used by backtest() - so keep this optimized for performance.
|
|
"""
|
|
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
|
|
ticker: Dict = {}
|
|
# Create ticker dict
|
|
for pair, pair_data in processed.items():
|
|
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
|
|
|
ticker_data = self.advise_sell(
|
|
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
|
|
|
# to avoid using data from future, we buy/sell with signal from previous candle
|
|
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
|
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
|
|
|
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
|
|
|
# Convert from Pandas to list for performance reasons
|
|
# (Looping Pandas is slow.)
|
|
ticker[pair] = [x for x in ticker_data.itertuples()]
|
|
return ticker
|
|
|
|
def _get_sell_trade_entry(
|
|
self, pair: str, buy_row: DataFrame,
|
|
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[BacktestResult]:
|
|
|
|
stake_amount = args['stake_amount']
|
|
max_open_trades = args.get('max_open_trades', 0)
|
|
trade = Trade(
|
|
open_rate=buy_row.open,
|
|
open_date=buy_row.date,
|
|
stake_amount=stake_amount,
|
|
amount=stake_amount / buy_row.open,
|
|
fee_open=self.fee,
|
|
fee_close=self.fee
|
|
)
|
|
|
|
# calculate win/lose forwards from buy point
|
|
for sell_row in partial_ticker:
|
|
if max_open_trades > 0:
|
|
# Increase trade_count_lock for every iteration
|
|
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
|
|
|
|
buy_signal = sell_row.buy
|
|
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
|
|
sell_row.sell, low=sell_row.low, high=sell_row.high)
|
|
if sell.sell_flag:
|
|
|
|
trade_dur = int((sell_row.date - buy_row.date).total_seconds() // 60)
|
|
# Special handling if high or low hit STOP_LOSS or ROI
|
|
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
|
|
# Set close_rate to stoploss
|
|
closerate = trade.stop_loss
|
|
elif sell.sell_type == (SellType.ROI):
|
|
# get next entry in min_roi > to trade duration
|
|
# Interface.py skips on trade_duration <= duration
|
|
roi_entry = max(list(filter(lambda x: trade_dur >= x,
|
|
self.strategy.minimal_roi.keys())))
|
|
roi = self.strategy.minimal_roi[roi_entry]
|
|
|
|
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
|
|
closerate = - (trade.open_rate * roi + trade.open_rate *
|
|
(1 + trade.fee_open)) / (trade.fee_close - 1)
|
|
else:
|
|
closerate = sell_row.open
|
|
|
|
return BacktestResult(pair=pair,
|
|
profit_percent=trade.calc_profit_percent(rate=closerate),
|
|
profit_abs=trade.calc_profit(rate=closerate),
|
|
open_time=buy_row.date,
|
|
close_time=sell_row.date,
|
|
trade_duration=trade_dur,
|
|
open_index=buy_row.Index,
|
|
close_index=sell_row.Index,
|
|
open_at_end=False,
|
|
open_rate=buy_row.open,
|
|
close_rate=closerate,
|
|
sell_reason=sell.sell_type
|
|
)
|
|
if partial_ticker:
|
|
# no sell condition found - trade stil open at end of backtest period
|
|
sell_row = partial_ticker[-1]
|
|
btr = BacktestResult(pair=pair,
|
|
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
|
|
profit_abs=trade.calc_profit(rate=sell_row.open),
|
|
open_time=buy_row.date,
|
|
close_time=sell_row.date,
|
|
trade_duration=int((
|
|
sell_row.date - buy_row.date).total_seconds() // 60),
|
|
open_index=buy_row.Index,
|
|
close_index=sell_row.Index,
|
|
open_at_end=True,
|
|
open_rate=buy_row.open,
|
|
close_rate=sell_row.open,
|
|
sell_reason=SellType.FORCE_SELL
|
|
)
|
|
logger.debug('Force_selling still open trade %s with %s perc - %s', btr.pair,
|
|
btr.profit_percent, btr.profit_abs)
|
|
return btr
|
|
return None
|
|
|
|
def backtest(self, args: Dict) -> DataFrame:
|
|
"""
|
|
Implements backtesting functionality
|
|
|
|
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
|
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
|
Avoid, logging on this method
|
|
|
|
:param args: a dict containing:
|
|
stake_amount: btc amount to use for each trade
|
|
processed: a processed dictionary with format {pair, data}
|
|
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
|
position_stacking: do we allow position stacking? (default: False)
|
|
:return: DataFrame
|
|
"""
|
|
processed = args['processed']
|
|
max_open_trades = args.get('max_open_trades', 0)
|
|
position_stacking = args.get('position_stacking', False)
|
|
start_date = args['start_date']
|
|
end_date = args['end_date']
|
|
trades = []
|
|
trade_count_lock: Dict = {}
|
|
|
|
# Dict of ticker-lists for performance (looping lists is a lot faster than dataframes)
|
|
ticker: Dict = self._get_ticker_list(processed)
|
|
|
|
lock_pair_until: Dict = {}
|
|
# Indexes per pair, so some pairs are allowed to have a missing start.
|
|
indexes: Dict = {}
|
|
tmp = start_date + timedelta(minutes=self.ticker_interval_mins)
|
|
|
|
# Loop timerange and get candle for each pair at that point in time
|
|
while tmp < end_date:
|
|
|
|
for i, pair in enumerate(ticker):
|
|
if pair not in indexes:
|
|
indexes[pair] = 0
|
|
|
|
try:
|
|
row = ticker[pair][indexes[pair]]
|
|
except IndexError:
|
|
# missing Data for one pair at the end.
|
|
# Warnings for this are shown by `validate_backtest_data`
|
|
continue
|
|
|
|
# Waits until the time-counter reaches the start of the data for this pair.
|
|
if row.date > tmp.datetime:
|
|
continue
|
|
|
|
indexes[pair] += 1
|
|
|
|
if row.buy == 0 or row.sell == 1:
|
|
continue # skip rows where no buy signal or that would immediately sell off
|
|
|
|
if (not position_stacking and pair in lock_pair_until
|
|
and row.date <= lock_pair_until[pair]):
|
|
# without positionstacking, we can only have one open trade per pair.
|
|
continue
|
|
|
|
if max_open_trades > 0:
|
|
# Check if max_open_trades has already been reached for the given date
|
|
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
|
continue
|
|
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
|
|
|
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]:],
|
|
trade_count_lock, args)
|
|
|
|
if trade_entry:
|
|
lock_pair_until[pair] = trade_entry.close_time
|
|
trades.append(trade_entry)
|
|
else:
|
|
# Set lock_pair_until to end of testing period if trade could not be closed
|
|
lock_pair_until[pair] = end_date.datetime
|
|
|
|
# Move time one configured time_interval ahead.
|
|
tmp += timedelta(minutes=self.ticker_interval_mins)
|
|
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
|
|
|
def start(self) -> None:
|
|
"""
|
|
Run a backtesting end-to-end
|
|
:return: None
|
|
"""
|
|
data: Dict[str, Any] = {}
|
|
pairs = self.config['exchange']['pair_whitelist']
|
|
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
|
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
|
|
|
timerange = Arguments.parse_timerange(None if self.config.get(
|
|
'timerange') is None else str(self.config.get('timerange')))
|
|
data = history.load_data(
|
|
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
|
|
pairs=pairs,
|
|
ticker_interval=self.ticker_interval,
|
|
refresh_pairs=self.config.get('refresh_pairs', False),
|
|
exchange=self.exchange,
|
|
timerange=timerange,
|
|
live=self.config.get('live', False)
|
|
)
|
|
|
|
if not data:
|
|
logger.critical("No data found. Terminating.")
|
|
return
|
|
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
|
if self.config.get('use_max_market_positions', True):
|
|
max_open_trades = self.config['max_open_trades']
|
|
else:
|
|
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
|
max_open_trades = 0
|
|
all_results = {}
|
|
|
|
for strat in self.strategylist:
|
|
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
|
self._set_strategy(strat)
|
|
|
|
min_date, max_date = history.get_timeframe(data)
|
|
# Validate dataframe for missing values (mainly at start and end, as fillup is called)
|
|
history.validate_backtest_data(data, min_date, max_date,
|
|
timeframe_to_minutes(self.ticker_interval))
|
|
logger.info(
|
|
'Backtesting with data from %s up to %s (%s days)..',
|
|
min_date.isoformat(),
|
|
max_date.isoformat(),
|
|
(max_date - min_date).days
|
|
)
|
|
# need to reprocess data every time to populate signals
|
|
preprocessed = self.strategy.tickerdata_to_dataframe(data)
|
|
|
|
# Execute backtest and print results
|
|
all_results[self.strategy.get_strategy_name()] = self.backtest(
|
|
{
|
|
'stake_amount': self.config.get('stake_amount'),
|
|
'processed': preprocessed,
|
|
'max_open_trades': max_open_trades,
|
|
'position_stacking': self.config.get('position_stacking', False),
|
|
'start_date': min_date,
|
|
'end_date': max_date,
|
|
}
|
|
)
|
|
|
|
for strategy, results in all_results.items():
|
|
|
|
if self.config.get('export', False):
|
|
self._store_backtest_result(self.config['exportfilename'], results,
|
|
strategy if len(self.strategylist) > 1 else None)
|
|
|
|
print(f"Result for strategy {strategy}")
|
|
print(' BACKTESTING REPORT '.center(133, '='))
|
|
print(self._generate_text_table(data, results))
|
|
|
|
print(' SELL REASON STATS '.center(133, '='))
|
|
print(self._generate_text_table_sell_reason(data, results))
|
|
|
|
print(' LEFT OPEN TRADES REPORT '.center(133, '='))
|
|
print(self._generate_text_table(data, results.loc[results.open_at_end], True))
|
|
print()
|
|
if len(all_results) > 1:
|
|
# Print Strategy summary table
|
|
print(' Strategy Summary '.center(133, '='))
|
|
print(self._generate_text_table_strategy(all_results))
|
|
print('\nFor more details, please look at the detail tables above')
|