stable/freqtrade/optimize/hyperopt.py
2019-07-10 01:53:40 +03:00

338 lines
13 KiB
Python

# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
import logging
import os
import sys
from math import exp
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count
from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade.arguments import Arguments
from freqtrade.data.history import load_data, get_timeframe
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
TRIALSDATA_PICKLE = os.path.join('user_data', 'hyperopt_results.pickle')
HYPEROPT_LOCKFILE = os.path.join('user_data', 'hyperopt.lock')
class Hyperopt(Backtesting):
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
To run a backtest:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
# set TARGET_TRADES to suit your number concurrent trades so its realistic
# to the number of days
self.target_trades = 600
self.total_tries = config.get('epochs', 0)
self.current_best_loss = 100
# max average trade duration in minutes
# if eval ends with higher value, we consider it a failed eval
self.max_accepted_trade_duration = 300
# This is assumed to be expected avg profit * expected trade count.
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
# self.expected_max_profit = 3.85
# Check that the reported Σ% values do not exceed this!
# Note, this is ratio. 3.85 stated above means 385Σ%.
self.expected_max_profit = 3.0
# Previous evaluations
self.trials_file = TRIALSDATA_PICKLE
self.trials: List = []
def get_args(self, params):
dimensions = self.hyperopt_space()
# Ensure the number of dimensions match
# the number of parameters in the list x.
if len(params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions. '
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
# Create a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters x.
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
return arg_dict
def save_trials(self) -> None:
"""
Save hyperopt trials to file
"""
if self.trials:
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
dump(self.trials, self.trials_file)
def read_trials(self) -> List:
"""
Read hyperopt trials file
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = load(self.trials_file)
os.remove(self.trials_file)
return trials
def log_trials_result(self) -> None:
"""
Display Best hyperopt result
"""
results = sorted(self.trials, key=itemgetter('loss'))
best_result = results[0]
logger.info(
'Best result:\n%s\nwith values:\n',
best_result['result']
)
pprint(best_result['params'], indent=4)
if 'roi_t1' in best_result['params']:
logger.info('ROI table:')
pprint(self.custom_hyperopt.generate_roi_table(best_result['params']), indent=4)
def log_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
print_all = self.config.get('print_all', False)
if print_all or results['loss'] < self.current_best_loss:
# Output human-friendly index here (starting from 1)
current = results['current_tries'] + 1
total = results['total_tries']
res = results['result']
loss = results['loss']
self.current_best_loss = results['loss']
log_msg = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
log_msg = f'*{log_msg}' if results['initial_point'] else f' {log_msg}'
if print_all:
print(log_msg)
else:
print('\n' + log_msg)
else:
print('.', end='')
sys.stdout.flush()
def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float:
"""
Objective function, returns smaller number for more optimal results
"""
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
result = trade_loss + profit_loss + duration_loss
return result
def has_space(self, space: str) -> bool:
"""
Tell if a space value is contained in the configuration
"""
if space in self.config['spaces'] or 'all' in self.config['spaces']:
return True
return False
def hyperopt_space(self) -> List[Dimension]:
"""
Return the space to use during Hyperopt
"""
spaces: List[Dimension] = []
if self.has_space('buy'):
spaces += self.custom_hyperopt.indicator_space()
if self.has_space('sell'):
spaces += self.custom_hyperopt.sell_indicator_space()
# Make sure experimental is enabled
if 'experimental' not in self.config:
self.config['experimental'] = {}
self.config['experimental']['use_sell_signal'] = True
if self.has_space('roi'):
spaces += self.custom_hyperopt.roi_space()
if self.has_space('stoploss'):
spaces += self.custom_hyperopt.stoploss_space()
return spaces
def generate_optimizer(self, _params: Dict) -> Dict:
params = self.get_args(_params)
if self.has_space('roi'):
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('buy'):
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
elif hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
if self.has_space('sell'):
self.advise_sell = self.custom_hyperopt.sell_strategy_generator(params)
elif hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore
if self.has_space('stoploss'):
self.strategy.stoploss = params['stoploss']
processed = load(TICKERDATA_PICKLE)
min_date, max_date = get_timeframe(processed)
results = self.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': processed,
'position_stacking': self.config.get('position_stacking', False),
'start_date': min_date,
'end_date': max_date,
}
)
result_explanation = self.format_results(results)
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.trade_duration.mean()
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
if trade_count < self.config['hyperopt_min_trades']:
return {
'loss': MAX_LOSS,
'params': params,
'result': result_explanation,
}
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
return {
'loss': loss,
'params': params,
'result': result_explanation,
}
def format_results(self, results: DataFrame) -> str:
"""
Return the format result in a string
"""
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum() * 100.0
duration = results.trade_duration.mean()
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, cpu_count) -> Optimizer:
return Optimizer(
self.hyperopt_space(),
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.config.get('hyperopt_random_state', None)
)
def run_optimizer_parallel(self, parallel, asked) -> List:
return parallel(delayed(
wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
def load_previous_results(self):
""" read trials file if we have one """
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
logger.info(
'Loaded %d previous evaluations from disk.',
len(self.trials)
)
def start(self) -> None:
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange
)
if not data:
logger.critical("No data found. Terminating.")
return
min_date, max_date = get_timeframe(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
if self.has_space('buy') or self.has_space('sell'):
self.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
preprocessed = self.strategy.tickerdata_to_dataframe(data)
dump(preprocessed, TICKERDATA_PICKLE)
# We don't need exchange instance anymore while running hyperopt
self.exchange = None # type: ignore
self.load_previous_results()
cpus = cpu_count()
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}')
opt = self.get_optimizer(config_jobs)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = max(self.total_tries // jobs, 1)
for i in range(EVALS):
asked = opt.ask(n_points=jobs)
f_val = self.run_optimizer_parallel(parallel, asked)
opt.tell(asked, [i['loss'] for i in f_val])
self.trials += f_val
for j in range(jobs):
current = i * jobs + j
self.log_results({
'loss': f_val[j]['loss'],
'current_tries': current,
'initial_point': current < INITIAL_POINTS,
'total_tries': self.total_tries,
'result': f_val[j]['result'],
})
logger.debug(f"Optimizer params: {f_val[j]['params']}")
for j in range(jobs):
logger.debug(f"Optimizer state: Xi: {opt.Xi[-j-1]}, yi: {opt.yi[-j-1]}")
except KeyboardInterrupt:
print('User interrupted..')
self.save_trials()
self.log_trials_result()