443 lines
15 KiB
Python
443 lines
15 KiB
Python
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
|
|
|
|
"""
|
|
This module contains the hyperopt logic
|
|
"""
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import signal
|
|
import sys
|
|
import multiprocessing
|
|
|
|
from argparse import Namespace
|
|
from functools import reduce
|
|
from math import exp
|
|
from operator import itemgetter
|
|
from typing import Dict, Any, Callable, Optional
|
|
|
|
import numpy
|
|
import talib.abstract as ta
|
|
from hyperopt import STATUS_FAIL, STATUS_OK, Trials, fmin, hp, space_eval, tpe
|
|
from pandas import DataFrame
|
|
|
|
from skopt.space import Real, Integer, Categorical
|
|
from skopt import Optimizer
|
|
from sklearn.externals.joblib import Parallel, delayed
|
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
from freqtrade.arguments import Arguments
|
|
from freqtrade.configuration import Configuration
|
|
from freqtrade.optimize import load_data
|
|
from freqtrade.optimize.backtesting import Backtesting
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Hyperopt(Backtesting):
|
|
"""
|
|
Hyperopt class, this class contains all the logic to run a hyperopt simulation
|
|
|
|
To run a backtest:
|
|
hyperopt = Hyperopt(config)
|
|
hyperopt.start()
|
|
"""
|
|
def __init__(self, config: Dict[str, Any]) -> None:
|
|
super().__init__(config)
|
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
|
# to the number of days
|
|
self.target_trades = 600
|
|
self.total_tries = config.get('epochs', 0)
|
|
self.current_tries = 0
|
|
self.current_best_loss = 100
|
|
|
|
# max average trade duration in minutes
|
|
# if eval ends with higher value, we consider it a failed eval
|
|
self.max_accepted_trade_duration = 300
|
|
|
|
# this is expexted avg profit * expected trade count
|
|
# for example 3.5%, 1100 trades, self.expected_max_profit = 3.85
|
|
# check that the reported Σ% values do not exceed this!
|
|
self.expected_max_profit = 3.0
|
|
|
|
# Configuration and data used by hyperopt
|
|
self.processed: Optional[Dict[str, Any]] = None
|
|
|
|
# Hyperopt Trials
|
|
self.trials_file = os.path.join('user_data', 'hyperopt_trials.pickle')
|
|
self.trials = Trials()
|
|
|
|
def get_args(self, params):
|
|
dimensions = self.hyperopt_space()
|
|
# Ensure the number of dimensions match
|
|
# the number of parameters in the list x.
|
|
if len(params) != len(dimensions):
|
|
msg = "Mismatch in number of search-space dimensions. " \
|
|
"len(dimensions)=={} and len(x)=={}"
|
|
msg = msg.format(len(dimensions), len(params))
|
|
raise ValueError(msg)
|
|
|
|
# Create a dict where the keys are the names of the dimensions
|
|
# and the values are taken from the list of parameters x.
|
|
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
|
return arg_dict
|
|
|
|
@staticmethod
|
|
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
stoch_fast = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch_fast['fastd']
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
# Bollinger bands
|
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
dataframe['bb_lowerband'] = bollinger['lower']
|
|
|
|
return dataframe
|
|
|
|
def save_trials(self) -> None:
|
|
"""
|
|
Save hyperopt trials to file
|
|
"""
|
|
logger.info('Saving Trials to \'%s\'', self.trials_file)
|
|
pickle.dump(self.trials, open(self.trials_file, 'wb'))
|
|
|
|
def read_trials(self) -> Trials:
|
|
"""
|
|
Read hyperopt trials file
|
|
"""
|
|
logger.info('Reading Trials from \'%s\'', self.trials_file)
|
|
trials = pickle.load(open(self.trials_file, 'rb'))
|
|
os.remove(self.trials_file)
|
|
return trials
|
|
|
|
def log_trials_result(self) -> None:
|
|
"""
|
|
Display Best hyperopt result
|
|
"""
|
|
vals = json.dumps(self.trials.best_trial['misc']['vals'], indent=4)
|
|
results = self.trials.best_trial['result']['result']
|
|
logger.info('Best result:\n%s\nwith values:\n%s', results, vals)
|
|
|
|
def log_results(self, results) -> None:
|
|
"""
|
|
Log results if it is better than any previous evaluation
|
|
"""
|
|
if results['loss'] < self.current_best_loss:
|
|
self.current_best_loss = results['loss']
|
|
log_msg = '\n{:5d}/{}: {}. Loss {:.5f}'.format(
|
|
results['current_tries'],
|
|
results['total_tries'],
|
|
results['result'],
|
|
results['loss']
|
|
)
|
|
print(log_msg)
|
|
else:
|
|
print('.', end='')
|
|
sys.stdout.flush()
|
|
|
|
def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float:
|
|
"""
|
|
Objective function, returns smaller number for more optimal results
|
|
"""
|
|
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
|
|
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
|
|
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
|
|
return trade_loss + profit_loss + duration_loss
|
|
|
|
@staticmethod
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Generate the ROI table thqt will be used by Hyperopt
|
|
"""
|
|
roi_table = {}
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
return roi_table
|
|
|
|
@staticmethod
|
|
def roi_space() -> Dict[str, Any]:
|
|
"""
|
|
Values to search for each ROI steps
|
|
"""
|
|
return {
|
|
'roi_t1': hp.quniform('roi_t1', 10, 120, 20),
|
|
'roi_t2': hp.quniform('roi_t2', 10, 60, 15),
|
|
'roi_t3': hp.quniform('roi_t3', 10, 40, 10),
|
|
'roi_p1': hp.quniform('roi_p1', 0.01, 0.04, 0.01),
|
|
'roi_p2': hp.quniform('roi_p2', 0.01, 0.07, 0.01),
|
|
'roi_p3': hp.quniform('roi_p3', 0.01, 0.20, 0.01),
|
|
}
|
|
|
|
@staticmethod
|
|
def stoploss_space() -> Dict[str, Any]:
|
|
"""
|
|
Stoploss Value to search
|
|
"""
|
|
return {
|
|
'stoploss': hp.quniform('stoploss', -0.5, -0.02, 0.02),
|
|
}
|
|
|
|
@staticmethod
|
|
def indicator_space() -> Dict[str, Any]:
|
|
"""
|
|
Define your Hyperopt space for searching strategy parameters
|
|
"""
|
|
return [
|
|
Integer(10, 25, name='mfi-value'),
|
|
Integer(15, 45, name='fastd-value'),
|
|
Integer(20, 50, name='adx-value'),
|
|
Integer(20, 40, name='rsi-value'),
|
|
Categorical([True, False], name='mfi-enabled'),
|
|
Categorical([True, False], name='fastd-enabled'),
|
|
Categorical([True, False], name='adx-enabled'),
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
]
|
|
|
|
|
|
def has_space(self, space: str) -> bool:
|
|
"""
|
|
Tell if a space value is contained in the configuration
|
|
"""
|
|
if space in self.config['spaces'] or 'all' in self.config['spaces']:
|
|
return True
|
|
return False
|
|
|
|
def hyperopt_space(self) -> Dict[str, Any]:
|
|
"""
|
|
Return the space to use during Hyperopt
|
|
"""
|
|
return Hyperopt.indicator_space()
|
|
# spaces: Dict = {}
|
|
# if self.has_space('buy'):
|
|
# spaces = {**spaces, **Hyperopt.indicator_space()}
|
|
# if self.has_space('roi'):
|
|
# spaces = {**spaces, **Hyperopt.roi_space()}
|
|
# if self.has_space('stoploss'):
|
|
# spaces = {**spaces, **Hyperopt.stoploss_space()}
|
|
# return spaces
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by hyperopt
|
|
"""
|
|
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use
|
|
"""
|
|
conditions = []
|
|
# GUARDS AND TRENDS
|
|
# if 'macd_below_zero' in params and params['macd_below_zero']['enabled']:
|
|
# conditions.append(dataframe['macd'] < 0)
|
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
|
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
|
if 'fastd' in params and params['fastd-enabled']:
|
|
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
|
if 'adx' in params and params['adx-enabled']:
|
|
conditions.append(dataframe['adx'] > params['adx-value'])
|
|
if 'rsi' in params and params['rsi-enabled']:
|
|
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
|
|
|
# TRIGGERS
|
|
triggers = {
|
|
}
|
|
#conditions.append(triggers.get(params['trigger']['type']))
|
|
|
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband']) # single trigger
|
|
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
def generate_optimizer(self, _params) -> Dict:
|
|
params = self.get_args(_params)
|
|
|
|
if self.has_space('roi'):
|
|
self.analyze.strategy.minimal_roi = self.generate_roi_table(params)
|
|
|
|
if self.has_space('buy'):
|
|
self.populate_buy_trend = self.buy_strategy_generator(params)
|
|
|
|
if self.has_space('stoploss'):
|
|
self.analyze.strategy.stoploss = params['stoploss']
|
|
|
|
results = self.backtest(
|
|
{
|
|
'stake_amount': self.config['stake_amount'],
|
|
'processed': self.processed,
|
|
'realistic': self.config.get('realistic_simulation', False),
|
|
}
|
|
)
|
|
result_explanation = self.format_results(results)
|
|
|
|
total_profit = results.profit_percent.sum()
|
|
trade_count = len(results.index)
|
|
trade_duration = results.trade_duration.mean()
|
|
|
|
if trade_count == 0 or trade_duration > self.max_accepted_trade_duration:
|
|
print('.', end='')
|
|
sys.stdout.flush()
|
|
return {
|
|
'status': STATUS_FAIL,
|
|
'loss': float('inf')
|
|
}
|
|
|
|
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
|
|
|
|
self.current_tries += 1
|
|
|
|
self.log_results(
|
|
{
|
|
'loss': loss,
|
|
'current_tries': self.current_tries,
|
|
'total_tries': self.total_tries,
|
|
'result': result_explanation,
|
|
}
|
|
)
|
|
|
|
return {
|
|
'loss': loss,
|
|
'status': STATUS_OK,
|
|
'result': result_explanation,
|
|
}
|
|
|
|
def format_results(self, results: DataFrame) -> str:
|
|
"""
|
|
Return the format result in a string
|
|
"""
|
|
return ('{:6d} trades. Avg profit {: 5.2f}%. '
|
|
'Total profit {: 11.8f} {} ({:.4f}Σ%). Avg duration {:5.1f} mins.').format(
|
|
len(results.index),
|
|
results.profit_percent.mean() * 100.0,
|
|
results.profit_abs.sum(),
|
|
self.config['stake_currency'],
|
|
results.profit_percent.sum(),
|
|
results.trade_duration.mean(),
|
|
)
|
|
|
|
def start(self) -> None:
|
|
timerange = Arguments.parse_timerange(None if self.config.get(
|
|
'timerange') is None else str(self.config.get('timerange')))
|
|
data = load_data(
|
|
datadir=str(self.config.get('datadir')),
|
|
pairs=self.config['exchange']['pair_whitelist'],
|
|
ticker_interval=self.ticker_interval,
|
|
timerange=timerange
|
|
)
|
|
|
|
if self.has_space('buy'):
|
|
self.analyze.populate_indicators = Hyperopt.populate_indicators # type: ignore
|
|
self.processed = self.tickerdata_to_dataframe(data)
|
|
|
|
logger.info('Preparing Trials..')
|
|
signal.signal(signal.SIGINT, self.signal_handler)
|
|
# read trials file if we have one
|
|
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
|
|
self.trials = self.read_trials()
|
|
|
|
self.current_tries = len(self.trials.results)
|
|
self.total_tries += self.current_tries
|
|
logger.info(
|
|
'Continuing with trials. Current: %d, Total: %d',
|
|
self.current_tries,
|
|
self.total_tries
|
|
)
|
|
|
|
try:
|
|
# best_parameters = fmin(
|
|
# fn=self.generate_optimizer,
|
|
# space=self.hyperopt_space(),
|
|
# algo=tpe.suggest,
|
|
# max_evals=self.total_tries,
|
|
# trials=self.trials
|
|
# )
|
|
|
|
# results = sorted(self.trials.results, key=itemgetter('loss'))
|
|
# best_result = results[0]['result']
|
|
cpus = multiprocessing.cpu_count()
|
|
print(f'Found {cpus}. Let\'s make them scream!')
|
|
|
|
opt = Optimizer(self.hyperopt_space(), base_estimator="ET", acq_optimizer="auto", n_initial_points=30, acq_optimizer_kwargs={'n_jobs': -1})
|
|
|
|
with Parallel(n_jobs=-1) as parallel:
|
|
for i in range(self.total_tries//cpus):
|
|
asked = opt.ask(n_points=cpus)
|
|
#asked = opt.ask()
|
|
#f_val = self.generate_optimizer(asked)
|
|
f_val = parallel(delayed(self.generate_optimizer)(v) for v in asked)
|
|
opt.tell(asked, [i['loss'] for i in f_val])
|
|
print(f'got value {f_val}')
|
|
|
|
|
|
except ValueError:
|
|
best_parameters = {}
|
|
best_result = 'Sorry, Hyperopt was not able to find good parameters. Please ' \
|
|
'try with more epochs (param: -e).'
|
|
|
|
# Improve best parameter logging display
|
|
# if best_parameters:
|
|
# best_parameters = space_eval(
|
|
# self.hyperopt_space(),
|
|
# best_parameters
|
|
# )
|
|
|
|
# logger.info('Best parameters:\n%s', json.dumps(best_parameters, indent=4))
|
|
# if 'roi_t1' in best_parameters:
|
|
# logger.info('ROI table:\n%s', self.generate_roi_table(best_parameters))
|
|
|
|
# logger.info('Best Result:\n%s', best_result)
|
|
|
|
# # Store trials result to file to resume next time
|
|
# self.save_trials()
|
|
|
|
def signal_handler(self, sig, frame) -> None:
|
|
"""
|
|
Hyperopt SIGINT handler
|
|
"""
|
|
logger.info(
|
|
'Hyperopt received %s',
|
|
signal.Signals(sig).name
|
|
)
|
|
|
|
self.save_trials()
|
|
self.log_trials_result()
|
|
sys.exit(0)
|
|
|
|
|
|
def start(args: Namespace) -> None:
|
|
"""
|
|
Start Backtesting script
|
|
:param args: Cli args from Arguments()
|
|
:return: None
|
|
"""
|
|
|
|
# Remove noisy log messages
|
|
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
|
|
|
# Initialize configuration
|
|
# Monkey patch the configuration with hyperopt_conf.py
|
|
configuration = Configuration(args)
|
|
logger.info('Starting freqtrade in Hyperopt mode')
|
|
config = configuration.load_config()
|
|
|
|
config['exchange']['key'] = ''
|
|
config['exchange']['secret'] = ''
|
|
|
|
# Initialize backtesting object
|
|
hyperopt = Hyperopt(config)
|
|
hyperopt.start()
|