8a3272e7c5
it's used only once, so this does not make sense and hides the origin of the function
415 lines
15 KiB
Python
415 lines
15 KiB
Python
# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
|
|
|
|
"""
|
|
This module contains the hyperopt logic
|
|
"""
|
|
|
|
import logging
|
|
import multiprocessing
|
|
import os
|
|
import sys
|
|
from argparse import Namespace
|
|
from functools import reduce
|
|
from math import exp
|
|
from operator import itemgetter
|
|
from typing import Any, Callable, Dict, List
|
|
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
from sklearn.externals.joblib import Parallel, delayed, dump, load
|
|
from skopt import Optimizer
|
|
from skopt.space import Categorical, Dimension, Integer, Real
|
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
from freqtrade.arguments import Arguments
|
|
from freqtrade.configuration import Configuration
|
|
from freqtrade.optimize import load_data
|
|
from freqtrade.optimize.backtesting import Backtesting
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
|
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
|
|
|
|
|
|
class Hyperopt(Backtesting):
|
|
"""
|
|
Hyperopt class, this class contains all the logic to run a hyperopt simulation
|
|
|
|
To run a backtest:
|
|
hyperopt = Hyperopt(config)
|
|
hyperopt.start()
|
|
"""
|
|
def __init__(self, config: Dict[str, Any]) -> None:
|
|
super().__init__(config)
|
|
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
|
# to the number of days
|
|
self.target_trades = 600
|
|
self.total_tries = config.get('epochs', 0)
|
|
self.current_best_loss = 100
|
|
|
|
# max average trade duration in minutes
|
|
# if eval ends with higher value, we consider it a failed eval
|
|
self.max_accepted_trade_duration = 300
|
|
|
|
# this is expexted avg profit * expected trade count
|
|
# for example 3.5%, 1100 trades, self.expected_max_profit = 3.85
|
|
# check that the reported Σ% values do not exceed this!
|
|
self.expected_max_profit = 3.0
|
|
|
|
# Previous evaluations
|
|
self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle')
|
|
self.trials: List = []
|
|
|
|
def get_args(self, params):
|
|
dimensions = self.hyperopt_space()
|
|
# Ensure the number of dimensions match
|
|
# the number of parameters in the list x.
|
|
if len(params) != len(dimensions):
|
|
raise ValueError('Mismatch in number of search-space dimensions. '
|
|
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
|
|
|
|
# Create a dict where the keys are the names of the dimensions
|
|
# and the values are taken from the list of parameters x.
|
|
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
|
return arg_dict
|
|
|
|
@staticmethod
|
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
stoch_fast = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch_fast['fastd']
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
# Bollinger bands
|
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
dataframe['bb_lowerband'] = bollinger['lower']
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
|
|
return dataframe
|
|
|
|
def save_trials(self) -> None:
|
|
"""
|
|
Save hyperopt trials to file
|
|
"""
|
|
if self.trials:
|
|
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
|
|
dump(self.trials, self.trials_file)
|
|
|
|
def read_trials(self) -> List:
|
|
"""
|
|
Read hyperopt trials file
|
|
"""
|
|
logger.info('Reading Trials from \'%s\'', self.trials_file)
|
|
trials = load(self.trials_file)
|
|
os.remove(self.trials_file)
|
|
return trials
|
|
|
|
def log_trials_result(self) -> None:
|
|
"""
|
|
Display Best hyperopt result
|
|
"""
|
|
results = sorted(self.trials, key=itemgetter('loss'))
|
|
best_result = results[0]
|
|
logger.info(
|
|
'Best result:\n%s\nwith values:\n%s',
|
|
best_result['result'],
|
|
best_result['params']
|
|
)
|
|
if 'roi_t1' in best_result['params']:
|
|
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
|
|
|
|
def log_results(self, results) -> None:
|
|
"""
|
|
Log results if it is better than any previous evaluation
|
|
"""
|
|
if results['loss'] < self.current_best_loss:
|
|
current = results['current_tries']
|
|
total = results['total_tries']
|
|
res = results['result']
|
|
loss = results['loss']
|
|
self.current_best_loss = results['loss']
|
|
log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}'
|
|
print(log_msg)
|
|
else:
|
|
print('.', end='')
|
|
sys.stdout.flush()
|
|
|
|
def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float:
|
|
"""
|
|
Objective function, returns smaller number for more optimal results
|
|
"""
|
|
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
|
|
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
|
|
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
|
|
result = trade_loss + profit_loss + duration_loss
|
|
return result
|
|
|
|
@staticmethod
|
|
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
|
"""
|
|
Generate the ROI table that will be used by Hyperopt
|
|
"""
|
|
roi_table = {}
|
|
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
|
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
|
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
|
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
|
|
|
return roi_table
|
|
|
|
@staticmethod
|
|
def roi_space() -> List[Dimension]:
|
|
"""
|
|
Values to search for each ROI steps
|
|
"""
|
|
return [
|
|
Integer(10, 120, name='roi_t1'),
|
|
Integer(10, 60, name='roi_t2'),
|
|
Integer(10, 40, name='roi_t3'),
|
|
Real(0.01, 0.04, name='roi_p1'),
|
|
Real(0.01, 0.07, name='roi_p2'),
|
|
Real(0.01, 0.20, name='roi_p3'),
|
|
]
|
|
|
|
@staticmethod
|
|
def stoploss_space() -> List[Dimension]:
|
|
"""
|
|
Stoploss search space
|
|
"""
|
|
return [
|
|
Real(-0.5, -0.02, name='stoploss'),
|
|
]
|
|
|
|
@staticmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching strategy parameters
|
|
"""
|
|
return [
|
|
Integer(10, 25, name='mfi-value'),
|
|
Integer(15, 45, name='fastd-value'),
|
|
Integer(20, 50, name='adx-value'),
|
|
Integer(20, 40, name='rsi-value'),
|
|
Categorical([True, False], name='mfi-enabled'),
|
|
Categorical([True, False], name='fastd-enabled'),
|
|
Categorical([True, False], name='adx-enabled'),
|
|
Categorical([True, False], name='rsi-enabled'),
|
|
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
|
]
|
|
|
|
def has_space(self, space: str) -> bool:
|
|
"""
|
|
Tell if a space value is contained in the configuration
|
|
"""
|
|
if space in self.config['spaces'] or 'all' in self.config['spaces']:
|
|
return True
|
|
return False
|
|
|
|
def hyperopt_space(self) -> List[Dimension]:
|
|
"""
|
|
Return the space to use during Hyperopt
|
|
"""
|
|
spaces: List[Dimension] = []
|
|
if self.has_space('buy'):
|
|
spaces += Hyperopt.indicator_space()
|
|
if self.has_space('roi'):
|
|
spaces += Hyperopt.roi_space()
|
|
if self.has_space('stoploss'):
|
|
spaces += Hyperopt.stoploss_space()
|
|
return spaces
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by hyperopt
|
|
"""
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use
|
|
"""
|
|
conditions = []
|
|
# GUARDS AND TRENDS
|
|
if 'mfi-enabled' in params and params['mfi-enabled']:
|
|
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
|
if 'fastd-enabled' in params and params['fastd-enabled']:
|
|
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
|
if 'adx-enabled' in params and params['adx-enabled']:
|
|
conditions.append(dataframe['adx'] > params['adx-value'])
|
|
if 'rsi-enabled' in params and params['rsi-enabled']:
|
|
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
|
|
|
# TRIGGERS
|
|
if params['trigger'] == 'bb_lower':
|
|
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
|
if params['trigger'] == 'macd_cross_signal':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['macd'], dataframe['macdsignal']
|
|
))
|
|
if params['trigger'] == 'sar_reversal':
|
|
conditions.append(qtpylib.crossed_above(
|
|
dataframe['close'], dataframe['sar']
|
|
))
|
|
|
|
dataframe.loc[
|
|
reduce(lambda x, y: x & y, conditions),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
def generate_optimizer(self, _params) -> Dict:
|
|
params = self.get_args(_params)
|
|
|
|
if self.has_space('roi'):
|
|
self.strategy.minimal_roi = self.generate_roi_table(params)
|
|
|
|
if self.has_space('buy'):
|
|
self.advise_buy = self.buy_strategy_generator(params)
|
|
|
|
if self.has_space('stoploss'):
|
|
self.strategy.stoploss = params['stoploss']
|
|
|
|
processed = load(TICKERDATA_PICKLE)
|
|
results = self.backtest(
|
|
{
|
|
'stake_amount': self.config['stake_amount'],
|
|
'processed': processed,
|
|
'position_stacking': self.config.get('position_stacking', True),
|
|
}
|
|
)
|
|
result_explanation = self.format_results(results)
|
|
|
|
total_profit = results.profit_percent.sum()
|
|
trade_count = len(results.index)
|
|
trade_duration = results.trade_duration.mean()
|
|
|
|
if trade_count == 0:
|
|
return {
|
|
'loss': MAX_LOSS,
|
|
'params': params,
|
|
'result': result_explanation,
|
|
}
|
|
|
|
loss = self.calculate_loss(total_profit, trade_count, trade_duration)
|
|
|
|
return {
|
|
'loss': loss,
|
|
'params': params,
|
|
'result': result_explanation,
|
|
}
|
|
|
|
def format_results(self, results: DataFrame) -> str:
|
|
"""
|
|
Return the format result in a string
|
|
"""
|
|
trades = len(results.index)
|
|
avg_profit = results.profit_percent.mean() * 100.0
|
|
total_profit = results.profit_abs.sum()
|
|
stake_cur = self.config['stake_currency']
|
|
profit = results.profit_percent.sum()
|
|
duration = results.trade_duration.mean()
|
|
|
|
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
|
|
f'Total profit {total_profit: 11.8f} {stake_cur} '
|
|
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
|
|
|
|
def get_optimizer(self, cpu_count) -> Optimizer:
|
|
return Optimizer(
|
|
self.hyperopt_space(),
|
|
base_estimator="ET",
|
|
acq_optimizer="auto",
|
|
n_initial_points=30,
|
|
acq_optimizer_kwargs={'n_jobs': cpu_count}
|
|
)
|
|
|
|
def run_optimizer_parallel(self, parallel, asked) -> List:
|
|
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
|
|
|
|
def load_previous_results(self):
|
|
""" read trials file if we have one """
|
|
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
|
|
self.trials = self.read_trials()
|
|
logger.info(
|
|
'Loaded %d previous evaluations from disk.',
|
|
len(self.trials)
|
|
)
|
|
|
|
def start(self) -> None:
|
|
timerange = Arguments.parse_timerange(None if self.config.get(
|
|
'timerange') is None else str(self.config.get('timerange')))
|
|
data = load_data(
|
|
datadir=str(self.config.get('datadir')),
|
|
pairs=self.config['exchange']['pair_whitelist'],
|
|
ticker_interval=self.ticker_interval,
|
|
timerange=timerange
|
|
)
|
|
|
|
if self.has_space('buy'):
|
|
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
|
|
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
|
self.exchange = None # type: ignore
|
|
self.load_previous_results()
|
|
|
|
cpus = multiprocessing.cpu_count()
|
|
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
|
|
|
|
opt = self.get_optimizer(cpus)
|
|
EVALS = max(self.total_tries // cpus, 1)
|
|
try:
|
|
with Parallel(n_jobs=cpus) as parallel:
|
|
for i in range(EVALS):
|
|
asked = opt.ask(n_points=cpus)
|
|
f_val = self.run_optimizer_parallel(parallel, asked)
|
|
opt.tell(asked, [i['loss'] for i in f_val])
|
|
|
|
self.trials += f_val
|
|
for j in range(cpus):
|
|
self.log_results({
|
|
'loss': f_val[j]['loss'],
|
|
'current_tries': i * cpus + j,
|
|
'total_tries': self.total_tries,
|
|
'result': f_val[j]['result'],
|
|
})
|
|
except KeyboardInterrupt:
|
|
print('User interrupted..')
|
|
|
|
self.save_trials()
|
|
self.log_trials_result()
|
|
|
|
|
|
def start(args: Namespace) -> None:
|
|
"""
|
|
Start Backtesting script
|
|
:param args: Cli args from Arguments()
|
|
:return: None
|
|
"""
|
|
|
|
# Remove noisy log messages
|
|
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
|
|
|
|
# Initialize configuration
|
|
# Monkey patch the configuration with hyperopt_conf.py
|
|
configuration = Configuration(args)
|
|
logger.info('Starting freqtrade in Hyperopt mode')
|
|
config = configuration.load_config()
|
|
|
|
config['exchange']['key'] = ''
|
|
config['exchange']['secret'] = ''
|
|
|
|
if config.get('strategy') and config.get('strategy') != 'DefaultStrategy':
|
|
logger.error("Please don't use --strategy for hyperopt.")
|
|
logger.error(
|
|
"Read the documentation at "
|
|
"https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md "
|
|
"to understand how to configure hyperopt.")
|
|
raise ValueError("--strategy configured but not supported for hyperopt")
|
|
# Initialize backtesting object
|
|
hyperopt = Hyperopt(config)
|
|
hyperopt.start()
|