stable/freqtrade/freqai/RL/Base5ActionRLEnv.py

339 lines
13 KiB
Python

import logging
from enum import Enum
from typing import Optional
import gym
import numpy as np
from gym import spaces
from gym.utils import seeding
from pandas import DataFrame
import pandas as pd
from abc import abstractmethod
logger = logging.getLogger(__name__)
class Actions(Enum):
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Positions(Enum):
Short = 0
Long = 1
Neutral = 0.5
def opposite(self):
return Positions.Short if self == Positions.Long else Positions.Long
def mean_over_std(x):
std = np.std(x, ddof=1)
mean = np.mean(x)
return mean / std if std > 0 else 0
class Base5ActionRLEnv(gym.Env):
"""
Base class for a 5 action environment
"""
metadata = {'render.modes': ['human']}
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
reward_kwargs: dict = {}, window_size=10, starting_point=True,
id: str = 'baseenv-1', seed: int = 1, config: dict = {}):
self.rl_config = config['freqai']['rl_config']
self.id = id
self.seed(seed)
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True):
self.df = df
self.signal_features = self.df
self.prices = prices
self.window_size = window_size
self.starting_point = starting_point
self.rr = reward_kwargs["rr"]
self.profit_aim = reward_kwargs["profit_aim"]
self.fee = 0.0015
# # spaces
self.shape = (window_size, self.signal_features.shape[1] + 3)
self.action_space = spaces.Discrete(len(Actions))
self.observation_space = spaces.Box(
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
# episode
self._start_tick: int = self.window_size
self._end_tick: int = len(self.prices) - 1
self._done: bool = False
self._current_tick: int = self._start_tick
self._last_trade_tick: Optional[int] = None
self._position = Positions.Neutral
self._position_history: list = [None]
self.total_reward: float = 0
self._total_profit: float = 0
self._first_rendering: bool = False
self.history: dict = {}
self.trade_history: list = []
def seed(self, seed: int = 1):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def reset(self):
self._done = False
if self.starting_point is True:
self._position_history = (self._start_tick * [None]) + [self._position]
else:
self._position_history = (self.window_size * [None]) + [self._position]
self._current_tick = self._start_tick
self._last_trade_tick = None
self._position = Positions.Neutral
self.total_reward = 0.
self._total_profit = 1. # unit
self._first_rendering = True
self.history = {}
self.trade_history = []
self.portfolio_log_returns = np.zeros(len(self.prices))
self._profits = [(self._start_tick, 1)]
self.close_trade_profit = []
return self._get_observation()
def step(self, action: int):
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
self.update_portfolio_log_returns(action)
self._update_profit(action)
step_reward = self.calculate_reward(action)
self.total_reward += step_reward
trade_type = None
if self.is_tradesignal(action):
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
if action == Actions.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
elif action == Actions.Long_enter.value:
self._position = Positions.Long
trade_type = "long"
elif action == Actions.Short_enter.value:
self._position = Positions.Short
trade_type = "short"
elif action == Actions.Long_exit.value:
self._position = Positions.Neutral
trade_type = "neutral"
elif action == Actions.Short_exit.value:
self._position = Positions.Neutral
trade_type = "neutral"
else:
print("case not defined")
# Update last trade tick
self._last_trade_tick = self._current_tick
if trade_type is not None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick,
'type': trade_type})
if self._total_profit < 0.2:
self._done = True
self._position_history.append(self._position)
info = dict(
tick=self._current_tick,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value
)
observation = self._get_observation()
self._update_history(info)
return observation, step_reward, self._done, info
def _get_observation(self):
features_window = self.signal_features[(
self._current_tick - self.window_size):self._current_tick]
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
columns=['current_profit_pct', 'position', 'trade_duration'],
index=features_window.index)
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
features_and_state['position'] = self._position.value
features_and_state['trade_duration'] = self.get_trade_duration()
features_and_state = pd.concat([features_window, features_and_state], axis=1)
return features_and_state
def get_trade_duration(self):
if self._last_trade_tick is None:
return 0
else:
return self._current_tick - self._last_trade_tick
def get_unrealized_profit(self):
if self._last_trade_tick is None:
return 0.
if self._position == Positions.Neutral:
return 0.
elif self._position == Positions.Short:
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price) / last_trade_price
elif self._position == Positions.Long:
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price) / last_trade_price
else:
return 0.
def is_tradesignal(self, action: int):
# trade signal
"""
not trade signal is :
Determine if the signal is non sensical
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Short_enter.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Long) or
(action == Actions.Short_exit.value and self._position == Positions.Neutral) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Long_enter.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Short) or
(action == Actions.Long_exit.value and self._position == Positions.Neutral))
def _is_trade(self, action: Actions):
return ((action == Actions.Long_enter.value and self._position == Positions.Neutral) or
(action == Actions.Short_enter.value and self._position == Positions.Neutral))
def is_hold(self, action):
return ((action == Actions.Short_enter.value and self._position == Positions.Short) or
(action == Actions.Long_enter.value and self._position == Positions.Long) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Neutral.value and self._position == Positions.Short) or
(action == Actions.Neutral.value and self._position == Positions.Neutral))
def add_entry_fee(self, price):
return price * (1 + self.fee)
def add_exit_fee(self, price):
return price / (1 + self.fee)
def _update_history(self, info):
if not self.history:
self.history = {key: [] for key in info.keys()}
for key, value in info.items():
self.history[key].append(value)
def get_sharpe_ratio(self):
return mean_over_std(self.get_portfolio_log_returns())
@abstractmethod
def calculate_reward(self, action):
"""
Reward is created by BaseReinforcementLearningModel and can
be inherited/edited by the user made ReinforcementLearner file.
"""
return 0.
def _update_profit(self, action):
# if self._is_trade(action) or self._done:
if self._is_trade(action) or self._done:
pnl = self.get_unrealized_profit()
if self._position == Positions.Long:
self._total_profit = self._total_profit + self._total_profit * pnl
self._profits.append((self._current_tick, self._total_profit))
self.close_trade_profit.append(pnl)
if self._position == Positions.Short:
self._total_profit = self._total_profit + self._total_profit * pnl
self._profits.append((self._current_tick, self._total_profit))
self.close_trade_profit.append(pnl)
def most_recent_return(self, action: int):
"""
Calculate the tick to tick return if in a trade.
Return is generated from rising prices in Long
and falling prices in Short positions.
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
"""
# Long positions
if self._position == Positions.Long:
current_price = self.prices.iloc[self._current_tick].open
previous_price = self.prices.iloc[self._current_tick - 1].open
if (self._position_history[self._current_tick - 1] == Positions.Short
or self._position_history[self._current_tick - 1] == Positions.Neutral):
previous_price = self.add_entry_fee(previous_price)
return np.log(current_price) - np.log(previous_price)
# Short positions
if self._position == Positions.Short:
current_price = self.prices.iloc[self._current_tick].open
previous_price = self.prices.iloc[self._current_tick - 1].open
if (self._position_history[self._current_tick - 1] == Positions.Long
or self._position_history[self._current_tick - 1] == Positions.Neutral):
previous_price = self.add_exit_fee(previous_price)
return np.log(previous_price) - np.log(current_price)
return 0
def get_portfolio_log_returns(self):
return self.portfolio_log_returns[1:self._current_tick + 1]
def update_portfolio_log_returns(self, action):
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
def current_price(self) -> float:
return self.prices.iloc[self._current_tick].open
def prev_price(self) -> float:
return self.prices.iloc[self._current_tick - 1].open
def sharpe_ratio(self):
if len(self.close_trade_profit) == 0:
return 0.
returns = np.array(self.close_trade_profit)
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
return reward