339 lines
13 KiB
Python
339 lines
13 KiB
Python
import logging
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
import gym
|
|
import numpy as np
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
from pandas import DataFrame
|
|
import pandas as pd
|
|
from abc import abstractmethod
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Actions(Enum):
|
|
Neutral = 0
|
|
Long_enter = 1
|
|
Long_exit = 2
|
|
Short_enter = 3
|
|
Short_exit = 4
|
|
|
|
|
|
class Positions(Enum):
|
|
Short = 0
|
|
Long = 1
|
|
Neutral = 0.5
|
|
|
|
def opposite(self):
|
|
return Positions.Short if self == Positions.Long else Positions.Long
|
|
|
|
|
|
def mean_over_std(x):
|
|
std = np.std(x, ddof=1)
|
|
mean = np.mean(x)
|
|
return mean / std if std > 0 else 0
|
|
|
|
|
|
class Base5ActionRLEnv(gym.Env):
|
|
"""
|
|
Base class for a 5 action environment
|
|
"""
|
|
metadata = {'render.modes': ['human']}
|
|
|
|
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
|
|
reward_kwargs: dict = {}, window_size=10, starting_point=True,
|
|
id: str = 'baseenv-1', seed: int = 1, config: dict = {}):
|
|
|
|
self.rl_config = config['freqai']['rl_config']
|
|
self.id = id
|
|
self.seed(seed)
|
|
self.reset_env(df, prices, window_size, reward_kwargs, starting_point)
|
|
|
|
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
|
|
reward_kwargs: dict, starting_point=True):
|
|
self.df = df
|
|
self.signal_features = self.df
|
|
self.prices = prices
|
|
self.window_size = window_size
|
|
self.starting_point = starting_point
|
|
self.rr = reward_kwargs["rr"]
|
|
self.profit_aim = reward_kwargs["profit_aim"]
|
|
|
|
self.fee = 0.0015
|
|
|
|
# # spaces
|
|
self.shape = (window_size, self.signal_features.shape[1] + 3)
|
|
self.action_space = spaces.Discrete(len(Actions))
|
|
self.observation_space = spaces.Box(
|
|
low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
|
|
|
# episode
|
|
self._start_tick: int = self.window_size
|
|
self._end_tick: int = len(self.prices) - 1
|
|
self._done: bool = False
|
|
self._current_tick: int = self._start_tick
|
|
self._last_trade_tick: Optional[int] = None
|
|
self._position = Positions.Neutral
|
|
self._position_history: list = [None]
|
|
self.total_reward: float = 0
|
|
self._total_profit: float = 0
|
|
self._first_rendering: bool = False
|
|
self.history: dict = {}
|
|
self.trade_history: list = []
|
|
|
|
def seed(self, seed: int = 1):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def reset(self):
|
|
|
|
self._done = False
|
|
|
|
if self.starting_point is True:
|
|
self._position_history = (self._start_tick * [None]) + [self._position]
|
|
else:
|
|
self._position_history = (self.window_size * [None]) + [self._position]
|
|
|
|
self._current_tick = self._start_tick
|
|
self._last_trade_tick = None
|
|
self._position = Positions.Neutral
|
|
|
|
self.total_reward = 0.
|
|
self._total_profit = 1. # unit
|
|
self._first_rendering = True
|
|
self.history = {}
|
|
self.trade_history = []
|
|
self.portfolio_log_returns = np.zeros(len(self.prices))
|
|
|
|
self._profits = [(self._start_tick, 1)]
|
|
self.close_trade_profit = []
|
|
|
|
return self._get_observation()
|
|
|
|
def step(self, action: int):
|
|
self._done = False
|
|
self._current_tick += 1
|
|
|
|
if self._current_tick == self._end_tick:
|
|
self._done = True
|
|
|
|
self.update_portfolio_log_returns(action)
|
|
|
|
self._update_profit(action)
|
|
step_reward = self.calculate_reward(action)
|
|
self.total_reward += step_reward
|
|
|
|
trade_type = None
|
|
if self.is_tradesignal(action):
|
|
"""
|
|
Action: Neutral, position: Long -> Close Long
|
|
Action: Neutral, position: Short -> Close Short
|
|
|
|
Action: Long, position: Neutral -> Open Long
|
|
Action: Long, position: Short -> Close Short and Open Long
|
|
|
|
Action: Short, position: Neutral -> Open Short
|
|
Action: Short, position: Long -> Close Long and Open Short
|
|
"""
|
|
|
|
if action == Actions.Neutral.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
elif action == Actions.Long_enter.value:
|
|
self._position = Positions.Long
|
|
trade_type = "long"
|
|
elif action == Actions.Short_enter.value:
|
|
self._position = Positions.Short
|
|
trade_type = "short"
|
|
elif action == Actions.Long_exit.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
elif action == Actions.Short_exit.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
else:
|
|
print("case not defined")
|
|
|
|
# Update last trade tick
|
|
self._last_trade_tick = self._current_tick
|
|
|
|
if trade_type is not None:
|
|
self.trade_history.append(
|
|
{'price': self.current_price(), 'index': self._current_tick,
|
|
'type': trade_type})
|
|
|
|
if self._total_profit < 0.2:
|
|
self._done = True
|
|
|
|
self._position_history.append(self._position)
|
|
|
|
info = dict(
|
|
tick=self._current_tick,
|
|
total_reward=self.total_reward,
|
|
total_profit=self._total_profit,
|
|
position=self._position.value
|
|
)
|
|
|
|
observation = self._get_observation()
|
|
|
|
self._update_history(info)
|
|
|
|
return observation, step_reward, self._done, info
|
|
|
|
def _get_observation(self):
|
|
features_window = self.signal_features[(
|
|
self._current_tick - self.window_size):self._current_tick]
|
|
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
|
|
columns=['current_profit_pct', 'position', 'trade_duration'],
|
|
index=features_window.index)
|
|
|
|
features_and_state['current_profit_pct'] = self.get_unrealized_profit()
|
|
features_and_state['position'] = self._position.value
|
|
features_and_state['trade_duration'] = self.get_trade_duration()
|
|
features_and_state = pd.concat([features_window, features_and_state], axis=1)
|
|
return features_and_state
|
|
|
|
def get_trade_duration(self):
|
|
if self._last_trade_tick is None:
|
|
return 0
|
|
else:
|
|
return self._current_tick - self._last_trade_tick
|
|
|
|
def get_unrealized_profit(self):
|
|
|
|
if self._last_trade_tick is None:
|
|
return 0.
|
|
|
|
if self._position == Positions.Neutral:
|
|
return 0.
|
|
elif self._position == Positions.Short:
|
|
current_price = self.add_entry_fee(self.prices.iloc[self._current_tick].open)
|
|
last_trade_price = self.add_exit_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
return (last_trade_price - current_price) / last_trade_price
|
|
elif self._position == Positions.Long:
|
|
current_price = self.add_exit_fee(self.prices.iloc[self._current_tick].open)
|
|
last_trade_price = self.add_entry_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
return (current_price - last_trade_price) / last_trade_price
|
|
else:
|
|
return 0.
|
|
|
|
def is_tradesignal(self, action: int):
|
|
# trade signal
|
|
"""
|
|
not trade signal is :
|
|
Determine if the signal is non sensical
|
|
e.g.: agent wants a Actions.Long_exit while it is in a Positions.short
|
|
"""
|
|
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Short) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
|
(action == Actions.Short_enter.value and self._position == Positions.Short) or
|
|
(action == Actions.Short_enter.value and self._position == Positions.Long) or
|
|
(action == Actions.Short_exit.value and self._position == Positions.Long) or
|
|
(action == Actions.Short_exit.value and self._position == Positions.Neutral) or
|
|
(action == Actions.Long_enter.value and self._position == Positions.Long) or
|
|
(action == Actions.Long_enter.value and self._position == Positions.Short) or
|
|
(action == Actions.Long_exit.value and self._position == Positions.Short) or
|
|
(action == Actions.Long_exit.value and self._position == Positions.Neutral))
|
|
|
|
def _is_trade(self, action: Actions):
|
|
return ((action == Actions.Long_enter.value and self._position == Positions.Neutral) or
|
|
(action == Actions.Short_enter.value and self._position == Positions.Neutral))
|
|
|
|
def is_hold(self, action):
|
|
return ((action == Actions.Short_enter.value and self._position == Positions.Short) or
|
|
(action == Actions.Long_enter.value and self._position == Positions.Long) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Short) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Neutral))
|
|
|
|
def add_entry_fee(self, price):
|
|
return price * (1 + self.fee)
|
|
|
|
def add_exit_fee(self, price):
|
|
return price / (1 + self.fee)
|
|
|
|
def _update_history(self, info):
|
|
if not self.history:
|
|
self.history = {key: [] for key in info.keys()}
|
|
|
|
for key, value in info.items():
|
|
self.history[key].append(value)
|
|
|
|
def get_sharpe_ratio(self):
|
|
return mean_over_std(self.get_portfolio_log_returns())
|
|
|
|
@abstractmethod
|
|
def calculate_reward(self, action):
|
|
"""
|
|
Reward is created by BaseReinforcementLearningModel and can
|
|
be inherited/edited by the user made ReinforcementLearner file.
|
|
"""
|
|
|
|
return 0.
|
|
|
|
def _update_profit(self, action):
|
|
# if self._is_trade(action) or self._done:
|
|
if self._is_trade(action) or self._done:
|
|
pnl = self.get_unrealized_profit()
|
|
|
|
if self._position == Positions.Long:
|
|
self._total_profit = self._total_profit + self._total_profit * pnl
|
|
self._profits.append((self._current_tick, self._total_profit))
|
|
self.close_trade_profit.append(pnl)
|
|
|
|
if self._position == Positions.Short:
|
|
self._total_profit = self._total_profit + self._total_profit * pnl
|
|
self._profits.append((self._current_tick, self._total_profit))
|
|
self.close_trade_profit.append(pnl)
|
|
|
|
def most_recent_return(self, action: int):
|
|
"""
|
|
Calculate the tick to tick return if in a trade.
|
|
Return is generated from rising prices in Long
|
|
and falling prices in Short positions.
|
|
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
|
"""
|
|
# Long positions
|
|
if self._position == Positions.Long:
|
|
current_price = self.prices.iloc[self._current_tick].open
|
|
previous_price = self.prices.iloc[self._current_tick - 1].open
|
|
|
|
if (self._position_history[self._current_tick - 1] == Positions.Short
|
|
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
|
previous_price = self.add_entry_fee(previous_price)
|
|
|
|
return np.log(current_price) - np.log(previous_price)
|
|
|
|
# Short positions
|
|
if self._position == Positions.Short:
|
|
current_price = self.prices.iloc[self._current_tick].open
|
|
previous_price = self.prices.iloc[self._current_tick - 1].open
|
|
if (self._position_history[self._current_tick - 1] == Positions.Long
|
|
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
|
previous_price = self.add_exit_fee(previous_price)
|
|
|
|
return np.log(previous_price) - np.log(current_price)
|
|
|
|
return 0
|
|
|
|
def get_portfolio_log_returns(self):
|
|
return self.portfolio_log_returns[1:self._current_tick + 1]
|
|
|
|
def update_portfolio_log_returns(self, action):
|
|
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
|
|
|
def current_price(self) -> float:
|
|
return self.prices.iloc[self._current_tick].open
|
|
|
|
def prev_price(self) -> float:
|
|
return self.prices.iloc[self._current_tick - 1].open
|
|
|
|
def sharpe_ratio(self):
|
|
if len(self.close_trade_profit) == 0:
|
|
return 0.
|
|
returns = np.array(self.close_trade_profit)
|
|
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
|
return reward
|