stable/freqtrade/optimize/hyperopt.py
2019-07-30 11:47:28 +03:00

347 lines
13 KiB
Python

# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
import logging
import os
import sys
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count
from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade.configuration import Arguments
from freqtrade.data.history import load_data, get_timeframe
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOptLoss to allow users import from this file
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F4
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver, HyperOptLossResolver
logger = logging.getLogger(__name__)
INITIAL_POINTS = 30
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
TRIALSDATA_PICKLE = os.path.join('user_data', 'hyperopt_results.pickle')
HYPEROPT_LOCKFILE = os.path.join('user_data', 'hyperopt.lock')
class Hyperopt(Backtesting):
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
To run a backtest:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
self.custom_hyperoptloss = HyperOptLossResolver(self.config).hyperoptloss
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.total_epochs = config.get('epochs', 0)
self.current_best_loss = 100
if not self.config.get('hyperopt_continue'):
self.clean_hyperopt()
else:
logger.info("Continuing on previous hyperopt results.")
# Previous evaluations
self.trials_file = TRIALSDATA_PICKLE
self.trials: List = []
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
self.max_open_trades = self.config['max_open_trades']
else:
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
self.max_open_trades = 0
self.position_stacking = self.config.get('position_stacking', False),
def clean_hyperopt(self):
"""
Remove hyperopt pickle files to restart hyperopt.
"""
for f in [TICKERDATA_PICKLE, TRIALSDATA_PICKLE]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
p.unlink()
def get_args(self, params):
dimensions = self.hyperopt_space()
# Ensure the number of dimensions match
# the number of parameters in the list x.
if len(params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions. '
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
# Create a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters x.
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
return arg_dict
def save_trials(self) -> None:
"""
Save hyperopt trials to file
"""
if self.trials:
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
dump(self.trials, self.trials_file)
def read_trials(self) -> List:
"""
Read hyperopt trials file
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = load(self.trials_file)
os.remove(self.trials_file)
return trials
def log_trials_result(self) -> None:
"""
Display Best hyperopt result
"""
results = sorted(self.trials, key=itemgetter('loss'))
best_result = results[0]
log_str = self.format_results_logstring(best_result)
print(f"\nBest result:\n{log_str}\nwith values:")
pprint(best_result['params'], indent=4)
if 'roi_t1' in best_result['params']:
print("ROI table:")
pprint(self.custom_hyperopt.generate_roi_table(best_result['params']), indent=4)
def log_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
"""
print_all = self.config.get('print_all', False)
if print_all or results['loss'] < self.current_best_loss:
log_str = self.format_results_logstring(results)
if print_all:
print(log_str)
else:
print('\n' + log_str)
else:
print('.', end='')
sys.stdout.flush()
def format_results_logstring(self, results) -> str:
# Output human-friendly index here (starting from 1)
current = results['current_epoch'] + 1
total = self.total_epochs
res = results['results_explanation']
loss = results['loss']
self.current_best_loss = results['loss']
log_str = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
log_str = f'*{log_str}' if results['is_initial_point'] else f' {log_str}'
return log_str
def has_space(self, space: str) -> bool:
"""
Tell if a space value is contained in the configuration
"""
if space in self.config['spaces'] or 'all' in self.config['spaces']:
return True
return False
def hyperopt_space(self) -> List[Dimension]:
"""
Return the space to use during Hyperopt
"""
spaces: List[Dimension] = []
if self.has_space('buy'):
spaces += self.custom_hyperopt.indicator_space()
if self.has_space('sell'):
spaces += self.custom_hyperopt.sell_indicator_space()
# Make sure experimental is enabled
if 'experimental' not in self.config:
self.config['experimental'] = {}
self.config['experimental']['use_sell_signal'] = True
if self.has_space('roi'):
spaces += self.custom_hyperopt.roi_space()
if self.has_space('stoploss'):
spaces += self.custom_hyperopt.stoploss_space()
return spaces
def generate_optimizer(self, _params: Dict) -> Dict:
"""
Used Optimize function. Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible!
"""
params = self.get_args(_params)
if self.has_space('roi'):
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('buy'):
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
if self.has_space('sell'):
self.advise_sell = self.custom_hyperopt.sell_strategy_generator(params)
if self.has_space('stoploss'):
self.strategy.stoploss = params['stoploss']
processed = load(TICKERDATA_PICKLE)
min_date, max_date = get_timeframe(processed)
results = self.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': processed,
'max_open_trades': self.max_open_trades,
'position_stacking': self.position_stacking,
'start_date': min_date,
'end_date': max_date,
}
)
results_explanation = self.format_results(results)
trade_count = len(results.index)
# If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies.
if trade_count < self.config['hyperopt_min_trades']:
return {
'loss': MAX_LOSS,
'params': params,
'results_explanation': results_explanation,
}
loss = self.calculate_loss(results=results, trade_count=trade_count,
min_date=min_date.datetime, max_date=max_date.datetime)
return {
'loss': loss,
'params': params,
'results_explanation': results_explanation,
}
def format_results(self, results: DataFrame) -> str:
"""
Return the formatted results explanation in a string
"""
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum() * 100.0
duration = results.trade_duration.mean()
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, cpu_count) -> Optimizer:
return Optimizer(
self.hyperopt_space(),
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.config.get('hyperopt_random_state', None)
)
def run_optimizer_parallel(self, parallel, asked) -> List:
return parallel(delayed(
wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
def load_previous_results(self):
""" read trials file if we have one """
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
logger.info(
'Loaded %d previous evaluations from disk.',
len(self.trials)
)
def start(self) -> None:
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
refresh_pairs=self.config.get('refresh_pairs', False),
exchange=self.exchange,
timerange=timerange
)
if not data:
logger.critical("No data found. Terminating.")
return
min_date, max_date = get_timeframe(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
self.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
preprocessed = self.strategy.tickerdata_to_dataframe(data)
dump(preprocessed, TICKERDATA_PICKLE)
# We don't need exchange instance anymore while running hyperopt
self.exchange = None # type: ignore
self.load_previous_results()
cpus = cpu_count()
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}')
opt = self.get_optimizer(config_jobs)
try:
with Parallel(n_jobs=config_jobs) as parallel:
jobs = parallel._effective_n_jobs()
logger.info(f'Effective number of parallel workers used: {jobs}')
EVALS = max(self.total_epochs // jobs, 1)
for i in range(EVALS):
asked = opt.ask(n_points=jobs)
f_val = self.run_optimizer_parallel(parallel, asked)
opt.tell(asked, [v['loss'] for v in f_val])
for j in range(jobs):
current = i * jobs + j
val = f_val[j]
val['current_epoch'] = current
val['is_initial_point'] = current < INITIAL_POINTS
self.log_results(val)
self.trials.append(val)
logger.debug(f"Optimizer epoch evaluated: {val}")
except KeyboardInterrupt:
print('User interrupted..')
self.save_trials()
self.log_trials_result()