stable/tests/optimize/test_hyperopt.py
2021-08-06 16:35:39 -06:00

1035 lines
40 KiB
Python

# pragma pylint: disable=missing-docstring,W0212,C0103
from datetime import datetime
from pathlib import Path
from unittest.mock import ANY, MagicMock
import pandas as pd
import pytest
from arrow import Arrow
from filelock import Timeout
from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_hyperopt
from freqtrade.data.history import load_data
from freqtrade.enums import RunMode, SellType
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt import Hyperopt
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
from freqtrade.optimize.hyperopt_tools import HyperoptTools
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.optimize.space import SKDecimal
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
from freqtrade.strategy.hyper import IntParameter
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
from .hyperopts.default_hyperopt import DefaultHyperOpt
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
]
config = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'timerange' not in config
assert 'runmode' in config
assert config['runmode'] == RunMode.HYPEROPT
def test_setup_hyperopt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
'freqtrade.configuration.configuration.create_datadir',
lambda c, x: x
)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--datadir', '/foo/bar',
'--timeframe', '1m',
'--timerange', ':100',
'--enable-position-stacking',
'--disable-max-market-positions',
'--epochs', '1000',
'--spaces', 'default',
'--print-all'
]
config = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.HYPEROPT
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'timeframe' in config
assert log_has('Parameter -i/--timeframe detected ... Using timeframe: 1m ...',
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'timerange' in config
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'epochs' in config
assert log_has('Parameter --epochs detected ... Will run Hyperopt with for 1000 epochs ...',
caplog)
assert 'spaces' in config
assert log_has('Parameter -s/--spaces detected: {}'.format(config['spaces']), caplog)
assert 'print_all' in config
assert log_has('Parameter --print-all detected ...', caplog)
def test_setup_hyperopt_configuration_stake_amount(mocker, default_conf) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--stake-amount', '1',
'--starting-balance', '2'
]
conf = setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
assert isinstance(conf, dict)
args = [
'hyperopt',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--stake-amount', '1',
'--starting-balance', '0.5'
]
with pytest.raises(OperationalException, match=r"Starting balance .* smaller .*"):
setup_optimize_configuration(get_args(args), RunMode.HYPEROPT)
def test_hyperoptresolver(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
hyperopt = DefaultHyperOpt
delattr(hyperopt, 'populate_indicators')
delattr(hyperopt, 'populate_buy_trend')
delattr(hyperopt, 'populate_sell_trend')
mocker.patch(
'freqtrade.resolvers.hyperopt_resolver.HyperOptResolver.load_object',
MagicMock(return_value=hyperopt(default_conf))
)
default_conf.update({'hyperopt': 'DefaultHyperOpt'})
x = HyperOptResolver.load_hyperopt(default_conf)
assert not hasattr(x, 'populate_indicators')
assert not hasattr(x, 'populate_buy_trend')
assert not hasattr(x, 'populate_sell_trend')
assert log_has("Hyperopt class does not provide populate_indicators() method. "
"Using populate_indicators from the strategy.", caplog)
assert log_has("Hyperopt class does not provide populate_sell_trend() method. "
"Using populate_sell_trend from the strategy.", caplog)
assert log_has("Hyperopt class does not provide populate_buy_trend() method. "
"Using populate_buy_trend from the strategy.", caplog)
assert hasattr(x, "ticker_interval") # DEPRECATED
assert hasattr(x, "timeframe")
def test_hyperoptresolver_wrongname(default_conf) -> None:
default_conf.update({'hyperopt': "NonExistingHyperoptClass"})
with pytest.raises(OperationalException, match=r'Impossible to load Hyperopt.*'):
HyperOptResolver.load_hyperopt(default_conf)
def test_hyperoptresolver_noname(default_conf):
default_conf['hyperopt'] = ''
with pytest.raises(OperationalException,
match="No Hyperopt set. Please use `--hyperopt` to specify "
"the Hyperopt class to use."):
HyperOptResolver.load_hyperopt(default_conf)
def test_start_not_installed(mocker, default_conf, import_fails) -> None:
start_mock = MagicMock()
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
patch_exchange(mocker)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt-path',
str(Path(__file__).parent / "hyperopts"),
'--epochs', '5',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
]
pargs = get_args(args)
with pytest.raises(OperationalException, match=r"Please ensure that the hyperopt dependencies"):
start_hyperopt(pargs)
def test_start(mocker, hyperopt_conf, caplog) -> None:
start_mock = MagicMock()
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.start', start_mock)
patch_exchange(mocker)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
'--epochs', '5'
]
pargs = get_args(args)
start_hyperopt(pargs)
assert log_has('Starting freqtrade in Hyperopt mode', caplog)
assert start_mock.call_count == 1
def test_start_no_data(mocker, hyperopt_conf) -> None:
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.data.history.load_pair_history', MagicMock(return_value=pd.DataFrame))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
patch_exchange(mocker)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
'--epochs', '5'
]
pargs = get_args(args)
with pytest.raises(OperationalException, match='No data found. Terminating.'):
start_hyperopt(pargs)
def test_start_filelock(mocker, hyperopt_conf, caplog) -> None:
hyperopt_mock = MagicMock(side_effect=Timeout(Hyperopt.get_lock_filename(hyperopt_conf)))
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.__init__', hyperopt_mock)
patch_exchange(mocker)
args = [
'hyperopt',
'--config', 'config.json',
'--hyperopt', 'DefaultHyperOpt',
'--hyperopt-loss', 'SharpeHyperOptLossDaily',
'--epochs', '5'
]
pargs = get_args(args)
start_hyperopt(pargs)
assert log_has("Another running instance of freqtrade Hyperopt detected.", caplog)
def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
hyperopt.current_best_loss = 2
hyperopt.total_epochs = 2
hyperopt.print_results(
{
'loss': 1,
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
},
'total_profit': 0,
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
'is_initial_point': False,
'is_best': True
}
)
out, err = capsys.readouterr()
assert all(x in out
for x in ["Best", "2/2", " 1", "0.10%", "0.00100000 BTC (1.00%)", "20.0 m"])
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
hyperopt.current_best_loss = 2
hyperopt.print_results(
{
'is_best': False,
'loss': 3,
'current_epoch': 1,
}
)
assert caplog.record_tuples == []
def test_roi_table_generation(hyperopt) -> None:
params = {
'roi_t1': 5,
'roi_t2': 10,
'roi_t3': 15,
'roi_p1': 1,
'roi_p2': 2,
'roi_p3': 3,
}
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_params_no_optimize_details(hyperopt) -> None:
hyperopt.config['spaces'] = ['buy']
res = hyperopt._get_no_optimize_details()
assert isinstance(res, dict)
assert "trailing" in res
assert res["trailing"]['trailing_stop'] is False
assert "roi" in res
assert res['roi']['0'] == 0.04
assert "stoploss" in res
assert res['stoploss']['stoploss'] == -0.1
def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result',
'params': {'buy': {}, 'sell': {}, 'roi': {}, 'stoploss': 0.0},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
},
}])
)
patch_exchange(mocker)
# Co-test loading timeframe from strategy
del hyperopt_conf['timeframe']
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
# Should be called for historical candle data
assert dumper.call_count == 1
assert dumper2.call_count == 1
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
def test_hyperopt_format_results(hyperopt):
bt_result = {
'results': pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_ratio": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_date": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_date": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"trade_duration": [123, 34, 31, 14],
"is_open": [False, False, False, True],
"stake_amount": [0.01, 0.01, 0.01, 0.01],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
}),
'config': hyperopt.config,
'locks': [],
'final_balance': 0.02,
'rejected_signals': 2,
'backtest_start_time': 1619718665,
'backtest_end_time': 1619718665,
}
results_metrics = generate_strategy_stats({'XRP/BTC': None}, '', bt_result,
Arrow(2017, 11, 14, 19, 32, 00),
Arrow(2017, 12, 14, 19, 32, 00), market_change=0)
results_explanation = HyperoptTools.format_results_explanation_string(results_metrics, 'BTC')
total_profit = results_metrics['profit_total_abs']
results = {
'loss': 0.0,
'params_dict': None,
'params_details': None,
'results_metrics': results_metrics,
'results_explanation': results_explanation,
'total_profit': total_profit,
'current_epoch': 1,
'is_initial_point': True,
}
result = HyperoptTools._format_explanation_string(results, 1)
assert ' 0.71%' in result
assert 'Total profit 0.00003100 BTC' in result
assert '0:50:00 min' in result
def test_populate_indicators(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
# Check if some indicators are generated. We will not test all of them
assert 'adx' in dataframe
assert 'mfi' in dataframe
assert 'rsi' in dataframe
def test_buy_strategy_generator(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
populate_buy_trend = hyperopt.custom_hyperopt.buy_strategy_generator(
{
'adx-value': 20,
'fastd-value': 20,
'mfi-value': 20,
'rsi-value': 20,
'adx-enabled': True,
'fastd-enabled': True,
'mfi-enabled': True,
'rsi-enabled': True,
'trigger': 'bb_lower'
}
)
result = populate_buy_trend(dataframe, {'pair': 'UNITTEST/BTC'})
# Check if some indicators are generated. We will not test all of them
assert 'buy' in result
assert 1 in result['buy']
def test_sell_strategy_generator(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
{'pair': 'UNITTEST/BTC'})
populate_sell_trend = hyperopt.custom_hyperopt.sell_strategy_generator(
{
'sell-adx-value': 20,
'sell-fastd-value': 75,
'sell-mfi-value': 80,
'sell-rsi-value': 20,
'sell-adx-enabled': True,
'sell-fastd-enabled': True,
'sell-mfi-enabled': True,
'sell-rsi-enabled': True,
'sell-trigger': 'sell-bb_upper'
}
)
result = populate_sell_trend(dataframe, {'pair': 'UNITTEST/BTC'})
# Check if some indicators are generated. We will not test all of them
print(result)
assert 'sell' in result
assert 1 in result['sell']
def test_generate_optimizer(mocker, hyperopt_conf) -> None:
hyperopt_conf.update({'spaces': 'all',
'hyperopt_min_trades': 1,
})
backtest_result = {
'results': pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_ratio": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_date": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_date": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"trade_duration": [123, 34, 31, 14],
"is_open": [False, False, False, True],
"stake_amount": [0.01, 0.01, 0.01, 0.01],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
}),
'config': hyperopt_conf,
'locks': [],
'rejected_signals': 20,
'final_balance': 1000,
}
mocker.patch('freqtrade.optimize.hyperopt.Backtesting.backtest', return_value=backtest_result)
mocker.patch('freqtrade.optimize.hyperopt.get_timerange',
return_value=(Arrow(2017, 12, 10), Arrow(2017, 12, 13)))
patch_exchange(mocker)
mocker.patch.object(Path, 'open')
mocker.patch('freqtrade.optimize.hyperopt.load', return_value={'XRP/BTC': None})
optimizer_param = {
'adx-value': 0,
'fastd-value': 35,
'mfi-value': 0,
'rsi-value': 0,
'adx-enabled': False,
'fastd-enabled': True,
'mfi-enabled': False,
'rsi-enabled': False,
'trigger': 'macd_cross_signal',
'sell-adx-value': 0,
'sell-fastd-value': 75,
'sell-mfi-value': 0,
'sell-rsi-value': 0,
'sell-adx-enabled': False,
'sell-fastd-enabled': True,
'sell-mfi-enabled': False,
'sell-rsi-enabled': False,
'sell-trigger': 'macd_cross_signal',
'roi_t1': 60.0,
'roi_t2': 30.0,
'roi_t3': 20.0,
'roi_p1': 0.01,
'roi_p2': 0.01,
'roi_p3': 0.1,
'stoploss': -0.4,
'trailing_stop': True,
'trailing_stop_positive': 0.02,
'trailing_stop_positive_offset_p1': 0.05,
'trailing_only_offset_is_reached': False,
}
response_expected = {
'loss': 1.9147239021396234,
'results_explanation': (' 4 trades. 4/0/0 Wins/Draws/Losses. '
'Avg profit 0.77%. Median profit 0.71%. Total profit '
'0.00003100 BTC ( 0.00%). '
'Avg duration 0:50:00 min.'
),
'params_details': {'buy': {'adx-enabled': False,
'adx-value': 0,
'fastd-enabled': True,
'fastd-value': 35,
'mfi-enabled': False,
'mfi-value': 0,
'rsi-enabled': False,
'rsi-value': 0,
'trigger': 'macd_cross_signal'},
'roi': {"0": 0.12000000000000001,
"20.0": 0.02,
"50.0": 0.01,
"110.0": 0},
'sell': {'sell-adx-enabled': False,
'sell-adx-value': 0,
'sell-fastd-enabled': True,
'sell-fastd-value': 75,
'sell-mfi-enabled': False,
'sell-mfi-value': 0,
'sell-rsi-enabled': False,
'sell-rsi-value': 0,
'sell-trigger': 'macd_cross_signal'},
'stoploss': {'stoploss': -0.4},
'trailing': {'trailing_only_offset_is_reached': False,
'trailing_stop': True,
'trailing_stop_positive': 0.02,
'trailing_stop_positive_offset': 0.07}},
'params_dict': optimizer_param,
'params_not_optimized': {'buy': {}, 'sell': {}},
'results_metrics': ANY,
'total_profit': 3.1e-08
}
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.min_date = Arrow(2017, 12, 10)
hyperopt.max_date = Arrow(2017, 12, 13)
hyperopt.init_spaces()
hyperopt.dimensions = hyperopt.dimensions
generate_optimizer_value = hyperopt.generate_optimizer(list(optimizer_param.values()))
assert generate_optimizer_value == response_expected
def test_clean_hyperopt(mocker, hyperopt_conf, caplog):
patch_exchange(mocker)
mocker.patch("freqtrade.strategy.hyper.HyperStrategyMixin.load_params_from_file",
MagicMock(return_value={}))
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
h = Hyperopt(hyperopt_conf)
assert unlinkmock.call_count == 2
assert log_has(f"Removing `{h.data_pickle_file}`.", caplog)
def test_print_json_spaces_all(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'params_details': {
'buy': {'mfi-value': None},
'sell': {'sell-mfi-value': None},
'roi': {}, 'stoploss': {'stoploss': None},
'trailing': {'trailing_stop': None}
},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
}])
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': 'all',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
result_str = (
'{"params":{"mfi-value":null,"sell-mfi-value":null},"minimal_roi"'
':{},"stoploss":null,"trailing_stop":null}'
)
assert result_str in out # noqa: E501
# Should be called for historical candle data
assert dumper.call_count == 1
assert dumper2.call_count == 1
def test_print_json_spaces_default(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'params_details': {
'buy': {'mfi-value': None},
'sell': {'sell-mfi-value': None},
'roi': {}, 'stoploss': {'stoploss': None}
},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
}])
)
patch_exchange(mocker)
hyperopt_conf.update({'print_json': True})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert '{"params":{"mfi-value":null,"sell-mfi-value":null},"minimal_roi":{},"stoploss":null}' in out # noqa: E501
# Should be called for historical candle data
assert dumper.call_count == 1
assert dumper2.call_count == 1
def test_print_json_spaces_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'params_details': {'roi': {}, 'stoploss': {'stoploss': None}},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
}])
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': 'roi stoploss',
'hyperopt_jobs': 1,
'print_json': True,
})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert '{"minimal_roi":{},"stoploss":null}' in out
assert dumper.call_count == 1
assert dumper2.call_count == 1
def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {'stoploss': 0.0},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
}])
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': 'roi stoploss'})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
del hyperopt.custom_hyperopt.__class__.sell_strategy_generator
del hyperopt.custom_hyperopt.__class__.indicator_space
del hyperopt.custom_hyperopt.__class__.sell_indicator_space
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
assert dumper.call_count == 1
assert dumper2.call_count == 1
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
def test_simplified_interface_all_failed(mocker, hyperopt_conf) -> None:
mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': 'all', })
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
del hyperopt.custom_hyperopt.__class__.sell_strategy_generator
del hyperopt.custom_hyperopt.__class__.indicator_space
del hyperopt.custom_hyperopt.__class__.sell_indicator_space
with pytest.raises(OperationalException, match=r"The 'buy' space is included into *"):
hyperopt.start()
def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
}])
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': 'buy'})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
# TODO: sell_strategy_generator() is actually not called because
# run_optimizer_parallel() is mocked
del hyperopt.custom_hyperopt.__class__.sell_strategy_generator
del hyperopt.custom_hyperopt.__class__.sell_indicator_space
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
assert dumper.called
assert dumper.call_count == 1
assert dumper2.call_count == 1
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
parallel = mocker.patch(
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
}])
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': 'sell', })
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
# TODO: buy_strategy_generator() is actually not called because
# run_optimizer_parallel() is mocked
del hyperopt.custom_hyperopt.__class__.buy_strategy_generator
del hyperopt.custom_hyperopt.__class__.indicator_space
hyperopt.start()
parallel.assert_called_once()
out, err = capsys.readouterr()
assert 'Best result:\n\n* 1/1: foo result Objective: 1.00000\n' in out
assert dumper.called
assert dumper.call_count == 1
assert dumper2.call_count == 1
assert hasattr(hyperopt.backtesting.strategy, "advise_sell")
assert hasattr(hyperopt.backtesting.strategy, "advise_buy")
assert hasattr(hyperopt, "max_open_trades")
assert hyperopt.max_open_trades == hyperopt_conf['max_open_trades']
assert hasattr(hyperopt, "position_stacking")
@pytest.mark.parametrize("method,space", [
('buy_strategy_generator', 'buy'),
('indicator_space', 'buy'),
('sell_strategy_generator', 'sell'),
('sell_indicator_space', 'sell'),
])
def test_simplified_interface_failed(mocker, hyperopt_conf, method, space) -> None:
mocker.patch('freqtrade.optimize.hyperopt.dump', MagicMock())
mocker.patch('freqtrade.optimize.hyperopt.file_dump_json')
mocker.patch('freqtrade.optimize.backtesting.Backtesting.load_bt_data',
MagicMock(return_value=(MagicMock(), None)))
mocker.patch(
'freqtrade.optimize.hyperopt.get_timerange',
MagicMock(return_value=(datetime(2017, 12, 10), datetime(2017, 12, 13)))
)
patch_exchange(mocker)
hyperopt_conf.update({'spaces': space})
hyperopt = Hyperopt(hyperopt_conf)
hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock()
hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={})
delattr(hyperopt.custom_hyperopt.__class__, method)
with pytest.raises(OperationalException, match=f"The '{space}' space is included into *"):
hyperopt.start()
def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
patch_exchange(mocker)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
(Path(tmpdir) / 'hyperopt_results').mkdir(parents=True)
# No hyperopt needed
del hyperopt_conf['hyperopt']
hyperopt_conf.update({
'strategy': 'HyperoptableStrategy',
'user_data_dir': Path(tmpdir),
})
hyperopt = Hyperopt(hyperopt_conf)
assert isinstance(hyperopt.custom_hyperopt, HyperOptAuto)
assert isinstance(hyperopt.backtesting.strategy.buy_rsi, IntParameter)
assert hyperopt.backtesting.strategy.buy_rsi.in_space is True
assert hyperopt.backtesting.strategy.buy_rsi.value == 35
buy_rsi_range = hyperopt.backtesting.strategy.buy_rsi.range
assert isinstance(buy_rsi_range, range)
# Range from 0 - 50 (inclusive)
assert len(list(buy_rsi_range)) == 51
hyperopt.start()
def test_SKDecimal():
space = SKDecimal(1, 2, decimals=2)
assert 1.5 in space
assert 2.5 not in space
assert space.low == 100
assert space.high == 200
assert space.inverse_transform([200]) == [2.0]
assert space.inverse_transform([100]) == [1.0]
assert space.inverse_transform([150, 160]) == [1.5, 1.6]
assert space.transform([1.5]) == [150]
assert space.transform([2.0]) == [200]
assert space.transform([1.0]) == [100]
assert space.transform([1.5, 1.6]) == [150, 160]