stable/freqtrade-strategies-master/user_data/hyperopts/MACDStrategy_hyperopt.py

131 lines
4.1 KiB
Python

# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame
from typing import Dict, Any, Callable, List
# import numpy as np
from skopt.space import Categorical, Dimension, Integer, Real
# import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.optimize.hyperopt_interface import IHyperOpt
class_name = 'MACDStrategy_hyperopt'
# This class is a sample. Feel free to customize it.
class MACDStrategy_hyperopt(IHyperOpt):
"""
This is an Example hyperopt to inspire you. - corresponding to MACDStrategy in this repository.
To run this, best use the following command (adjust to your environment if needed):
```
freqtrade hyperopt --strategy MACDStrategy --hyperopt MACDStrategy_hyperopt --spaces buy sell
```
The idea is to optimize only the CCI value.
- Buy side: CCI between -700 and 0
- Sell side: CCI between 0 and 700
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
"""
@staticmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
dataframe['cci'] = ta.CCI(dataframe)
return dataframe
@staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Buy strategy Hyperopt will build and use
"""
dataframe.loc[
(
(dataframe['macd'] > dataframe['macdsignal']) &
(dataframe['cci'] <= params['buy-cci-value']) &
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
'buy'] = 1
return dataframe
return populate_buy_trend
@staticmethod
def indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching strategy parameters
"""
return [
Integer(-700, 0, name='buy-cci-value'),
]
@staticmethod
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the sell strategy parameters to be used by hyperopt
"""
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Sell strategy Hyperopt will build and use
"""
dataframe.loc[
(
(dataframe['macd'] < dataframe['macdsignal']) &
(dataframe['cci'] >= params['sell-cci-value'])
),
'sell'] = 1
return dataframe
return populate_sell_trend
@staticmethod
def sell_indicator_space() -> List[Dimension]:
"""
Define your Hyperopt space for searching sell strategy parameters
"""
return [
Integer(0, 700, name='sell-cci-value'),
]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include buy
"""
dataframe.loc[
(
(dataframe['macd'] > dataframe['macdsignal']) &
(dataframe['cci'] <= -50.0)
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators. Should be a copy of from strategy
must align to populate_indicators in this file
Only used when --spaces does not include sell
"""
dataframe.loc[
(
(dataframe['macd'] < dataframe['macdsignal']) &
(dataframe['cci'] >= 100.0)
),
'sell'] = 1
return dataframe