131 lines
4.1 KiB
Python
131 lines
4.1 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
from typing import Dict, Any, Callable, List
|
|
|
|
# import numpy as np
|
|
from skopt.space import Categorical, Dimension, Integer, Real
|
|
|
|
# import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
|
|
|
class_name = 'MACDStrategy_hyperopt'
|
|
|
|
|
|
# This class is a sample. Feel free to customize it.
|
|
class MACDStrategy_hyperopt(IHyperOpt):
|
|
"""
|
|
This is an Example hyperopt to inspire you. - corresponding to MACDStrategy in this repository.
|
|
|
|
To run this, best use the following command (adjust to your environment if needed):
|
|
```
|
|
freqtrade hyperopt --strategy MACDStrategy --hyperopt MACDStrategy_hyperopt --spaces buy sell
|
|
```
|
|
The idea is to optimize only the CCI value.
|
|
- Buy side: CCI between -700 and 0
|
|
- Sell side: CCI between 0 and 700
|
|
|
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
|
"""
|
|
|
|
@staticmethod
|
|
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['macdhist'] = macd['macdhist']
|
|
dataframe['cci'] = ta.CCI(dataframe)
|
|
|
|
return dataframe
|
|
|
|
@staticmethod
|
|
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the buy strategy parameters to be used by hyperopt
|
|
"""
|
|
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Buy strategy Hyperopt will build and use
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['macd'] > dataframe['macdsignal']) &
|
|
(dataframe['cci'] <= params['buy-cci-value']) &
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_buy_trend
|
|
|
|
@staticmethod
|
|
def indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching strategy parameters
|
|
"""
|
|
return [
|
|
Integer(-700, 0, name='buy-cci-value'),
|
|
]
|
|
|
|
@staticmethod
|
|
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
|
"""
|
|
Define the sell strategy parameters to be used by hyperopt
|
|
"""
|
|
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Sell strategy Hyperopt will build and use
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['macd'] < dataframe['macdsignal']) &
|
|
(dataframe['cci'] >= params['sell-cci-value'])
|
|
),
|
|
'sell'] = 1
|
|
|
|
return dataframe
|
|
|
|
return populate_sell_trend
|
|
|
|
@staticmethod
|
|
def sell_indicator_space() -> List[Dimension]:
|
|
"""
|
|
Define your Hyperopt space for searching sell strategy parameters
|
|
"""
|
|
return [
|
|
Integer(0, 700, name='sell-cci-value'),
|
|
]
|
|
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators. Should be a copy of from strategy
|
|
must align to populate_indicators in this file
|
|
Only used when --spaces does not include buy
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['macd'] > dataframe['macdsignal']) &
|
|
(dataframe['cci'] <= -50.0)
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators. Should be a copy of from strategy
|
|
must align to populate_indicators in this file
|
|
Only used when --spaces does not include sell
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['macd'] < dataframe['macdsignal']) &
|
|
(dataframe['cci'] >= 100.0)
|
|
),
|
|
'sell'] = 1
|
|
|
|
return dataframe
|