stable/freqtrade/optimize/hyperopt_loss_sortino.py

50 lines
1.5 KiB
Python

"""
SortinoHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from pandas import DataFrame
import numpy as np
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SortinoHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
total_profit = results["profit_percent"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period
results['downside_returns'] = 0
results.loc[total_profit < 0, 'downside_returns'] = results['profit_percent']
down_stdev = np.std(results['downside_returns'])
if np.std(total_profit) != 0.0:
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sortino_ratio = -20.
# print(expected_returns_mean, down_stdev, sortino_ratio)
return -sortino_ratio