54 lines
2.5 KiB
Python
54 lines
2.5 KiB
Python
import logging
|
|
from typing import Any, Dict # , Tuple
|
|
|
|
# import numpy.typing as npt
|
|
from pandas import DataFrame
|
|
from stable_baselines3.common.callbacks import EvalCallback
|
|
from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
|
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import TensorboardCallback, make_env
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReinforcementLearner_multiproc(ReinforcementLearner):
|
|
"""
|
|
Demonstration of how to build vectorized environments
|
|
"""
|
|
|
|
def set_train_and_eval_environments(self, data_dictionary: Dict[str, Any],
|
|
prices_train: DataFrame, prices_test: DataFrame,
|
|
dk: FreqaiDataKitchen):
|
|
"""
|
|
User can override this if they are using a custom MyRLEnv
|
|
:param data_dictionary: dict = common data dictionary containing train and test
|
|
features/labels/weights.
|
|
:param prices_train/test: DataFrame = dataframe comprised of the prices to be used in
|
|
the environment during training
|
|
or testing
|
|
:param dk: FreqaiDataKitchen = the datakitchen for the current pair
|
|
"""
|
|
train_df = data_dictionary["train_features"]
|
|
test_df = data_dictionary["test_features"]
|
|
|
|
env_id = "train_env"
|
|
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train,
|
|
self.reward_params, self.CONV_WIDTH, monitor=True,
|
|
config=self.config) for i
|
|
in range(self.max_threads)])
|
|
|
|
eval_env_id = 'eval_env'
|
|
self.eval_env = SubprocVecEnv([make_env(self.MyRLEnv, eval_env_id, i, 1,
|
|
test_df, prices_test,
|
|
self.reward_params, self.CONV_WIDTH, monitor=True,
|
|
config=self.config) for i
|
|
in range(self.max_threads)])
|
|
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
|
|
render=False, eval_freq=len(train_df),
|
|
best_model_save_path=str(dk.data_path))
|
|
|
|
self.tensorboard_callback = TensorboardCallback()
|