stable/freqtrade/optimize/hyperopt.py

404 lines
15 KiB
Python

# pragma pylint: disable=too-many-instance-attributes, pointless-string-statement
"""
This module contains the hyperopt logic
"""
import functools
import logging
import multiprocessing
import os
import sys
from argparse import Namespace
from math import exp
from operator import itemgetter
from pathlib import Path
from pprint import pprint
from typing import Any, Dict, List
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects
from joblib._parallel_backends import LokyBackend
from joblib import register_parallel_backend, parallel_backend
from joblib.externals.loky import set_loky_pickler
from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade.arguments import Arguments
from freqtrade.configuration import Configuration
from freqtrade.data.history import load_data
from freqtrade.optimize import get_timeframe
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.state import RunMode
from freqtrade.resolvers import HyperOptResolver
logger = logging.getLogger(__name__)
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
EVALS_FRAME = 100
_hyperopt = None
class Hyperopt(Backtesting):
"""
Hyperopt class, this class contains all the logic to run a hyperopt simulation
To run a backtest:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
super().__init__(config)
self.config = config
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
# set TARGET_TRADES to suit your number concurrent trades so its realistic
# to the number of days
self.target_trades = 600
self.total_tries = config.get('epochs', 0)
self.current_best_loss = 100
# max average trade duration in minutes
# if eval ends with higher value, we consider it a failed eval
self.max_accepted_trade_duration = 300
# this is expexted avg profit * expected trade count
# for example 3.5%, 1100 trades, self.expected_max_profit = 3.85
# check that the reported Σ% values do not exceed this!
self.expected_max_profit = 3.0
# Previous evaluations
self.trials_file = os.path.join('user_data', 'hyperopt_results.pickle')
self.trials: List = []
self.opt = None
self.f_val: List = []
def get_args(self, params):
dimensions = self.hyperopt_space()
# Ensure the number of dimensions match
# the number of parameters in the list x.
if len(params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions. '
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
# Create a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters x.
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
return arg_dict
def save_trials(self) -> None:
"""
Save hyperopt trials to file
"""
if self.trials:
logger.info('Saving %d evaluations to \'%s\'', len(self.trials), self.trials_file)
dump(self.trials, self.trials_file)
def read_trials(self) -> List:
"""
Read hyperopt trials file
"""
logger.info('Reading Trials from \'%s\'', self.trials_file)
trials = load(self.trials_file)
os.remove(self.trials_file)
return trials
def log_trials_result(self) -> None:
"""
Display Best hyperopt result
"""
results = sorted(self.trials, key=itemgetter('loss'))
best_result = results[0]
logger.info(
'Best result:\n%s\nwith values:\n',
best_result['result']
)
pprint(best_result['params'], indent=4)
if 'roi_t1' in best_result['params']:
logger.info('ROI table:')
pprint(self.custom_hyperopt.generate_roi_table(best_result['params']), indent=4)
def log_results_immediate(self, n) -> None:
print('.', end='')
sys.stdout.flush()
def log_results(self, f_val, frame_start, total_tries) -> None:
"""
Log results if it is better than any previous evaluation
"""
for i, v in enumerate(f_val):
if v['loss'] < self.current_best_loss:
current = frame_start + i + 1
res = v['result']
loss = v['loss']
self.current_best_loss = v['loss']
log_msg = f'\n{current:5d}/{total_tries}: {res}. Loss {loss:.5f}'
print(log_msg)
def calculate_loss(self, total_profit: float, trade_count: int, trade_duration: float) -> float:
"""
Objective function, returns smaller number for more optimal results
"""
trade_loss = 1 - 0.25 * exp(-(trade_count - self.target_trades) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / self.expected_max_profit)
duration_loss = 0.4 * min(trade_duration / self.max_accepted_trade_duration, 1)
result = trade_loss + profit_loss + duration_loss
return result
def has_space(self, space: str) -> bool:
"""
Tell if a space value is contained in the configuration
"""
if space in self.config['spaces'] or 'all' in self.config['spaces']:
return True
return False
def hyperopt_space(self) -> List[Dimension]:
"""
Return the space to use during Hyperopt
"""
spaces: List[Dimension] = []
if self.has_space('buy'):
spaces += self.custom_hyperopt.indicator_space()
if self.has_space('sell'):
spaces += self.custom_hyperopt.sell_indicator_space()
# Make sure experimental is enabled
if 'experimental' not in self.config:
self.config['experimental'] = {}
self.config['experimental']['use_sell_signal'] = True
if self.has_space('roi'):
spaces += self.custom_hyperopt.roi_space()
if self.has_space('stoploss'):
spaces += self.custom_hyperopt.stoploss_space()
return spaces
def generate_optimizer(self, _params: Dict) -> Dict:
"""
Process params (a point in the hyper options space generated by the
optimizer.ask() optimizer method) and run backtest() for it.
This method is executed in one of the joblib worker processes.
The optimizer.tell() function is executed in the joblib parent process
in order to tell results to single instance of the optimizer rather than
its copies serialized in the joblib worker processes.
It receives result of this method as a part of the joblib batch completion
callback function.
"""
params = self.get_args(_params)
if self.has_space('roi'):
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('buy'):
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
elif hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.advise_buy = self.custom_hyperopt.populate_buy_trend # type: ignore
if self.has_space('sell'):
self.advise_sell = self.custom_hyperopt.sell_strategy_generator(params)
elif hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.advise_sell = self.custom_hyperopt.populate_sell_trend # type: ignore
if self.has_space('stoploss'):
self.strategy.stoploss = params['stoploss']
processed = load(TICKERDATA_PICKLE)
min_date, max_date = get_timeframe(processed)
results = self.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': processed,
'position_stacking': self.config.get('position_stacking', True),
'start_date': min_date,
'end_date': max_date,
}
)
result_explanation = self.format_results(results)
total_profit = results.profit_percent.sum()
trade_count = len(results.index)
trade_duration = results.trade_duration.mean()
loss = MAX_LOSS if trade_count == 0 else \
self.calculate_loss(total_profit, trade_count, trade_duration)
return {
'loss': loss,
'params': params,
'result': result_explanation,
'asked': _params,
}
def format_results(self, results: DataFrame) -> str:
"""
Return the format result in a string
"""
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum()
duration = results.trade_duration.mean()
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, cpu_count) -> Optimizer:
return Optimizer(
self.hyperopt_space(),
base_estimator="ET",
acq_optimizer="auto",
n_initial_points=30,
acq_optimizer_kwargs={'n_jobs': cpu_count},
)
def run_optimizer_parallel(self, parallel, tries: int, first_try: int) -> List:
result = parallel(delayed(self.parallel_objective)(asked, i) for asked, i in
zip(self.opt_generator(), range(first_try, first_try + tries)))
return result
def opt_generator(self):
while True:
if self.f_val:
# print("opt.tell(): ",
# [v['asked'] for v in self.f_val], [v['loss'] for v in self.f_val])
functools.partial(
self.opt.tell,
([v['asked'] for v in self.f_val], [v['loss'] for v in self.f_val])
)
self.f_val = []
yield self.opt.ask()
def parallel_objective(self, asked, n):
self.log_results_immediate(n)
return self.generate_optimizer(asked)
def parallel_callback(self, f_val):
self.f_val.extend(f_val)
def load_previous_results(self):
""" read trials file if we have one """
if os.path.exists(self.trials_file) and os.path.getsize(self.trials_file) > 0:
self.trials = self.read_trials()
logger.info(
'Loaded %d previous evaluations from disk.',
len(self.trials)
)
def start(self) -> None:
timerange = Arguments.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = load_data(
datadir=Path(self.config['datadir']) if self.config.get('datadir') else None,
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.ticker_interval,
timerange=timerange
)
if self.has_space('buy') or self.has_space('sell'):
self.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
self.exchange = None # type: ignore
self.load_previous_results()
cpus = multiprocessing.cpu_count()
logger.info(f'Found {cpus} CPU cores. Let\'s make them scream!')
set_loky_pickler('pickle')
self.opt = self.get_optimizer(cpus)
frames = ((self.total_tries - 1) // EVALS_FRAME)
last_frame_len = (self.total_tries - 1) % EVALS_FRAME
try:
register_parallel_backend('custom', CustomImmediateResultBackend)
with parallel_backend('custom'):
with Parallel(n_jobs=cpus, verbose=0) as parallel:
for frame in range(frames + 1):
frame_start = frame * EVALS_FRAME
frame_len = last_frame_len+1 if frame == frames else EVALS_FRAME
print(f"\n{frame_start+1}-{frame_start+frame_len}"
f"/{self.total_tries}: ", end='')
f_val = self.run_optimizer_parallel(
parallel,
frame_len,
frame_start
)
self.trials += f_val
self.log_results(f_val, frame_start, self.total_tries)
except KeyboardInterrupt:
print("User interrupted..")
print("\n")
self.save_trials()
self.log_trials_result()
def start(args: Namespace) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
# Initialize configuration
# Monkey patch the configuration with hyperopt_conf.py
configuration = Configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
config = configuration.load_config()
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
if config.get('strategy') and config.get('strategy') != 'DefaultStrategy':
logger.error("Please don't use --strategy for hyperopt.")
logger.error(
"Read the documentation at "
"https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md "
"to understand how to configure hyperopt.")
raise ValueError("--strategy configured but not supported for hyperopt")
# Initialize backtesting object
global _hyperopt
_hyperopt = Hyperopt(config)
_hyperopt.start()
class MultiCallback:
def __init__(self, *callbacks):
self.callbacks = [cb for cb in callbacks if cb]
def __call__(self, out):
for cb in self.callbacks:
cb(out)
class CustomImmediateResultBackend(LokyBackend):
def callback(self, result):
"""
Our custom completion callback. Executed in the parent process.
Use it to run Optimizer.tell() with immediate results of the backtest()
evaluated in the joblib worker process.
"""
# Fetch results from the Future object passed to us.
# Future object is assumed to be 'done' already.
f_val = result.result().copy()
_hyperopt.parallel_callback(f_val)
def apply_async(self, func, callback=None):
cbs = MultiCallback(callback, self.callback)
return super().apply_async(func, cbs)