stable/tests/optimize/test_backtesting.py
Matthias 9b050523e9
Merge pull request #2397 from freqtrade/feat/new_args_system
require subcommand for all actions
2019-11-14 06:28:42 +01:00

906 lines
35 KiB
Python

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import math
import random
from pathlib import Path
from unittest.mock import MagicMock
import numpy as np
import pandas as pd
import pytest
from arrow import Arrow
from freqtrade import DependencyException, OperationalException, constants
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import evaluate_result_multi
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.data.history import get_timeframe
from freqtrade.optimize import setup_configuration, start_backtesting
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.state import RunMode
from freqtrade.strategy.default_strategy import DefaultStrategy
from freqtrade.strategy.interface import SellType
from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
ORDER_TYPES = [
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
},
{
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': True
}]
def trim_dictlist(dict_list, num):
new = {}
for pair, pair_data in dict_list.items():
new[pair] = pair_data[num:].reset_index()
return new
def load_data_test(what, testdatadir):
timerange = TimeRange.parse_timerange('1510694220-1510700340')
pair = history.load_tickerdata_file(testdatadir, timeframe='1m',
pair='UNITTEST/BTC', timerange=timerange)
datalen = len(pair)
base = 0.001
if what == 'raise':
data = [
[
pair[x][0], # Keep old dates
x * base, # But replace O,H,L,C
x * base + 0.0001,
x * base - 0.0001,
x * base,
pair[x][5], # Keep old volume
] for x in range(0, datalen)
]
if what == 'lower':
data = [
[
pair[x][0], # Keep old dates
1 - x * base, # But replace O,H,L,C
1 - x * base + 0.0001,
1 - x * base - 0.0001,
1 - x * base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
if what == 'sine':
hz = 0.1 # frequency
data = [
[
pair[x][0], # Keep old dates
math.sin(x * hz) / 1000 + base, # But replace O,H,L,C
math.sin(x * hz) / 1000 + base + 0.0001,
math.sin(x * hz) / 1000 + base - 0.0001,
math.sin(x * hz) / 1000 + base,
pair[x][5] # Keep old volume
] for x in range(0, datalen)
]
return {'UNITTEST/BTC': parse_ticker_dataframe(data, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
def simple_backtest(config, contour, num_results, mocker, testdatadir) -> None:
patch_exchange(mocker)
config['ticker_interval'] = '1m'
backtesting = Backtesting(config)
data = load_data_test(contour, testdatadir)
processed = backtesting.strategy.tickerdata_to_dataframe(data)
min_date, max_date = get_timeframe(processed)
assert isinstance(processed, dict)
results = backtesting.backtest(
{
'stake_amount': config['stake_amount'],
'processed': processed,
'max_open_trades': 1,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
)
# results :: <class 'pandas.core.frame.DataFrame'>
assert len(results) == num_results
def mocked_load_data(datadir, pairs=[], timeframe='0m', refresh_pairs=False,
timerange=None, exchange=None, live=False, *args, **kwargs):
tickerdata = history.load_tickerdata_file(datadir, 'UNITTEST/BTC', '1m', timerange=timerange)
pairdata = {'UNITTEST/BTC': parse_ticker_dataframe(tickerdata, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
return pairdata
# use for mock ccxt.fetch_ohlvc'
def _load_pair_as_ticks(pair, tickfreq):
ticks = history.load_tickerdata_file(None, timeframe=tickfreq, pair=pair)
ticks = ticks[-201:]
return ticks
# FIX: fixturize this?
def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC', record=None):
data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair])
data = trim_dictlist(data, -201)
patch_exchange(mocker)
backtesting = Backtesting(conf)
processed = backtesting.strategy.tickerdata_to_dataframe(data)
min_date, max_date = get_timeframe(processed)
return {
'stake_amount': conf['stake_amount'],
'processed': processed,
'max_open_trades': 10,
'position_stacking': False,
'record': record,
'start_date': min_date,
'end_date': max_date,
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None, metadata=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
# Unit tests
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
config = setup_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog)
assert 'position_stacking' not in config
assert not log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'timerange' not in config
assert 'export' not in config
assert 'runmode' in config
assert config['runmode'] == RunMode.BACKTEST
def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
mocker.patch(
'freqtrade.configuration.configuration.create_datadir',
lambda c, x: x
)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', '/foo/bar',
'--ticker-interval', '1m',
'--enable-position-stacking',
'--disable-max-market-positions',
'--timerange', ':100',
'--export', '/bar/foo',
'--export-filename', 'foo_bar.json',
'--fee', '0',
]
config = setup_configuration(get_args(args), RunMode.BACKTEST)
assert 'max_open_trades' in config
assert 'stake_currency' in config
assert 'stake_amount' in config
assert 'exchange' in config
assert 'pair_whitelist' in config['exchange']
assert 'datadir' in config
assert config['runmode'] == RunMode.BACKTEST
assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog)
assert 'ticker_interval' in config
assert log_has('Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
caplog)
assert 'position_stacking' in config
assert log_has('Parameter --enable-position-stacking detected ...', caplog)
assert 'use_max_market_positions' in config
assert log_has('Parameter --disable-max-market-positions detected ...', caplog)
assert log_has('max_open_trades set to unlimited ...', caplog)
assert 'timerange' in config
assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog)
assert 'export' in config
assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog)
assert 'exportfilename' in config
assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog)
assert 'fee' in config
assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog)
def test_setup_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None:
default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
setup_configuration(get_args(args), RunMode.BACKTEST)
def test_start(mocker, fee, default_conf, caplog) -> None:
start_mock = MagicMock()
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
]
args = get_args(args)
start_backtesting(args)
assert log_has('Starting freqtrade in Backtesting mode', caplog)
assert start_mock.call_count == 1
@pytest.mark.parametrize("order_types", ORDER_TYPES)
def test_backtesting_init(mocker, default_conf, order_types) -> None:
"""
Check that stoploss_on_exchange is set to False while backtesting
since backtesting assumes a perfect stoploss anyway.
"""
default_conf["order_types"] = order_types
patch_exchange(mocker)
get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.config == default_conf
assert backtesting.timeframe == '5m'
assert callable(backtesting.strategy.tickerdata_to_dataframe)
assert callable(backtesting.strategy.advise_buy)
assert callable(backtesting.strategy.advise_sell)
assert isinstance(backtesting.strategy.dp, DataProvider)
get_fee.assert_called()
assert backtesting.fee == 0.5
assert not backtesting.strategy.order_types["stoploss_on_exchange"]
def test_backtesting_init_no_ticker_interval(mocker, default_conf, caplog) -> None:
patch_exchange(mocker)
del default_conf['ticker_interval']
default_conf['strategy_list'] = ['DefaultStrategy',
'SampleStrategy']
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
with pytest.raises(OperationalException):
Backtesting(default_conf)
log_has("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`", caplog)
def test_tickerdata_with_fee(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
default_conf['fee'] = 0.1234
fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5))
backtesting = Backtesting(default_conf)
assert backtesting.fee == 0.1234
assert fee_mock.call_count == 0
def test_tickerdata_to_dataframe_bt(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
# timerange = TimeRange(None, 'line', 0, -100)
timerange = TimeRange.parse_timerange('1510694220-1510700340')
tick = history.load_tickerdata_file(testdatadir, 'UNITTEST/BTC', '1m', timerange=timerange)
tickerlist = {'UNITTEST/BTC': parse_ticker_dataframe(tick, '1m', pair="UNITTEST/BTC",
fill_missing=True)}
backtesting = Backtesting(default_conf)
data = backtesting.strategy.tickerdata_to_dataframe(tickerlist)
assert len(data['UNITTEST/BTC']) == 102
# Load strategy to compare the result between Backtesting function and strategy are the same
strategy = DefaultStrategy(default_conf)
data2 = strategy.tickerdata_to_dataframe(tickerlist)
assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
def test_generate_text_table(default_conf, mocker):
patch_exchange(mocker)
default_conf['max_open_trades'] = 2
backtesting = Backtesting(default_conf)
results = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2],
'profit_abs': [0.2, 0.4],
'trade_duration': [10, 30],
'profit': [2, 0],
'loss': [0, 0]
}
)
result_str = (
'| pair | buy count | avg profit % | cum profit % | '
'tot profit BTC | tot profit % | avg duration | profit | loss |\n'
'|:--------|------------:|---------------:|---------------:|'
'-----------------:|---------------:|:---------------|---------:|-------:|\n'
'| ETH/BTC | 2 | 15.00 | 30.00 | '
'0.60000000 | 15.00 | 0:20:00 | 2 | 0 |\n'
'| TOTAL | 2 | 15.00 | 30.00 | '
'0.60000000 | 15.00 | 0:20:00 | 2 | 0 |'
)
assert backtesting._generate_text_table(data={'ETH/BTC': {}}, results=results) == result_str
def test_generate_text_table_sell_reason(default_conf, mocker):
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
results = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
result_str = (
'| Sell Reason | Count |\n'
'|:--------------|--------:|\n'
'| roi | 2 |\n'
'| stop_loss | 1 |'
)
assert backtesting._generate_text_table_sell_reason(
data={'ETH/BTC': {}}, results=results) == result_str
def test_generate_text_table_strategyn(default_conf, mocker):
"""
Test Backtesting.generate_text_table_sell_reason() method
"""
patch_exchange(mocker)
default_conf['max_open_trades'] = 2
backtesting = Backtesting(default_conf)
results = {}
results['ETH/BTC'] = pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'profit_percent': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'profit': [2, 0, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
results['LTC/BTC'] = pd.DataFrame(
{
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
'profit_percent': [0.4, 0.2, 0.3],
'profit_abs': [0.4, 0.4, 0.5],
'trade_duration': [15, 30, 15],
'profit': [4, 1, 0],
'loss': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
)
result_str = (
'| Strategy | buy count | avg profit % | cum profit % '
'| tot profit BTC | tot profit % | avg duration | profit | loss |\n'
'|:-----------|------------:|---------------:|---------------:'
'|-----------------:|---------------:|:---------------|---------:|-------:|\n'
'| ETH/BTC | 3 | 20.00 | 60.00 '
'| 1.10000000 | 30.00 | 0:17:00 | 3 | 0 |\n'
'| LTC/BTC | 3 | 30.00 | 90.00 '
'| 1.30000000 | 45.00 | 0:20:00 | 3 | 0 |'
)
assert backtesting._generate_text_table_strategy(all_results=results) == result_str
def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None:
def get_timeframe(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.load_data', mocked_load_data)
mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
)
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = '1m'
default_conf['datadir'] = testdatadir
default_conf['export'] = None
default_conf['timerange'] = '-1510694220'
backtesting = Backtesting(default_conf)
backtesting.start()
# check the logs, that will contain the backtest result
exists = [
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
assert log_has(line, caplog)
def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None:
def get_timeframe(input1):
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
mocker.patch('freqtrade.data.history.load_pair_history', MagicMock(return_value=None))
mocker.patch('freqtrade.data.history.get_timeframe', get_timeframe)
mocker.patch('freqtrade.exchange.Exchange.refresh_latest_ohlcv', MagicMock())
patch_exchange(mocker)
mocker.patch.multiple(
'freqtrade.optimize.backtesting.Backtesting',
backtest=MagicMock(),
_generate_text_table=MagicMock(return_value='1'),
)
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
default_conf['ticker_interval'] = "1m"
default_conf['datadir'] = testdatadir
default_conf['export'] = None
default_conf['timerange'] = '20180101-20180102'
backtesting = Backtesting(default_conf)
with pytest.raises(OperationalException, match='No data found. Terminating.'):
backtesting.start()
def test_backtest(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
pair = 'UNITTEST/BTC'
timerange = TimeRange('date', None, 1517227800, 0)
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'],
timerange=timerange)
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
min_date, max_date = get_timeframe(data_processed)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 10,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
)
assert not results.empty
assert len(results) == 2
expected = pd.DataFrame(
{'pair': [pair, pair],
'profit_percent': [0.0, 0.0],
'profit_abs': [0.0, 0.0],
'open_time': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime,
Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True
),
'close_time': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime,
Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True),
'open_index': [78, 184],
'close_index': [125, 192],
'trade_duration': [235, 40],
'open_at_end': [False, False],
'open_rate': [0.104445, 0.10302485],
'close_rate': [0.104969, 0.103541],
'sell_reason': [SellType.ROI, SellType.ROI]
})
pd.testing.assert_frame_equal(results, expected)
data_pair = data_processed[pair]
for _, t in results.iterrows():
ln = data_pair.loc[data_pair["date"] == t["open_time"]]
# Check open trade rate alignes to open rate
assert ln is not None
assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6)
# check close trade rate alignes to close rate or is between high and low
ln = data_pair.loc[data_pair["date"] == t["close_time"]]
assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or
round(ln.iloc[0]["low"], 6) < round(
t["close_rate"], 6) < round(ln.iloc[0]["high"], 6))
def test_backtest_1min_ticker_interval(default_conf, fee, mocker, testdatadir) -> None:
default_conf['ask_strategy']['use_sell_signal'] = False
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
# Run a backtesting for an exiting 1min timeframe
timerange = TimeRange.parse_timerange('1510688220-1510700340')
data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'],
timerange=timerange)
processed = backtesting.strategy.tickerdata_to_dataframe(data)
min_date, max_date = get_timeframe(processed)
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': processed,
'max_open_trades': 1,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
)
assert not results.empty
assert len(results) == 1
def test_processed(default_conf, mocker, testdatadir) -> None:
patch_exchange(mocker)
backtesting = Backtesting(default_conf)
dict_of_tickerrows = load_data_test('raise', testdatadir)
dataframes = backtesting.strategy.tickerdata_to_dataframe(dict_of_tickerrows)
dataframe = dataframes['UNITTEST/BTC']
cols = dataframe.columns
# assert the dataframe got some of the indicator columns
for col in ['close', 'high', 'low', 'open', 'date',
'ema10', 'rsi', 'fastd', 'plus_di']:
assert col in cols
def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir) -> None:
# TODO: Evaluate usefullness of this, the patterns and buy-signls are unrealistic
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
tests = [['raise', 19], ['lower', 0], ['sine', 35]]
for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres, mocker, testdatadir)
def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
results = backtesting.backtest(backtest_conf)
assert results.empty
def test_backtest_only_sell(mocker, default_conf, testdatadir):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None, pair=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir)
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = fun # Override
backtesting.strategy.advise_sell = fun # Override
results = backtesting.backtest(backtest_conf)
assert results.empty
def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir):
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch('freqtrade.optimize.backtesting.file_dump_json', MagicMock())
backtest_conf = _make_backtest_conf(mocker, conf=default_conf,
pair='UNITTEST/BTC', datadir=testdatadir)
default_conf['ticker_interval'] = '1m'
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = _trend_alternate # Override
backtesting.strategy.advise_sell = _trend_alternate # Override
results = backtesting.backtest(backtest_conf)
backtesting._store_backtest_result("test_.json", results)
# 200 candles in backtest data
# won't buy on first (shifted by 1)
# 100 buys signals
assert len(results) == 100
# One trade was force-closed at the end
assert len(results.loc[results.open_at_end]) == 0
@pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC'])
@pytest.mark.parametrize("tres", [0, 20, 30])
def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir):
def _trend_alternate_hold(dataframe=None, metadata=None):
"""
Buy every xth candle - sell every other xth -2 (hold on to pairs a bit)
"""
if metadata['pair'] in('ETH/BTC', 'LTC/BTC'):
multi = 20
else:
multi = 18
dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0)
dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0)
return dataframe
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
patch_exchange(mocker)
pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC']
data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs)
# Only use 500 lines to increase performance
data = trim_dictlist(data, -500)
# Remove data for one pair from the beginning of the data
data[pair] = data[pair][tres:].reset_index()
default_conf['ticker_interval'] = '5m'
backtesting = Backtesting(default_conf)
backtesting.strategy.advise_buy = _trend_alternate_hold # Override
backtesting.strategy.advise_sell = _trend_alternate_hold # Override
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
min_date, max_date = get_timeframe(data_processed)
backtest_conf = {
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 3,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
results = backtesting.backtest(backtest_conf)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results, '5m', 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results, '5m', 3)) == 0
backtest_conf = {
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 1,
'position_stacking': False,
'start_date': min_date,
'end_date': max_date,
}
results = backtesting.backtest(backtest_conf)
assert len(evaluate_result_multi(results, '5m', 1)) == 0
def test_backtest_record(default_conf, fee, mocker):
names = []
records = []
patch_exchange(mocker)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
mocker.patch(
'freqtrade.optimize.backtesting.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
backtesting = Backtesting(default_conf)
results = pd.DataFrame({"pair": ["UNITTEST/BTC", "UNITTEST/BTC",
"UNITTEST/BTC", "UNITTEST/BTC"],
"profit_percent": [0.003312, 0.010801, 0.013803, 0.002780],
"profit_abs": [0.000003, 0.000011, 0.000014, 0.000003],
"open_time": [Arrow(2017, 11, 14, 19, 32, 00).datetime,
Arrow(2017, 11, 14, 21, 36, 00).datetime,
Arrow(2017, 11, 14, 22, 12, 00).datetime,
Arrow(2017, 11, 14, 22, 44, 00).datetime],
"close_time": [Arrow(2017, 11, 14, 21, 35, 00).datetime,
Arrow(2017, 11, 14, 22, 10, 00).datetime,
Arrow(2017, 11, 14, 22, 43, 00).datetime,
Arrow(2017, 11, 14, 22, 58, 00).datetime],
"open_rate": [0.002543, 0.003003, 0.003089, 0.003214],
"close_rate": [0.002546, 0.003014, 0.003103, 0.003217],
"open_index": [1, 119, 153, 185],
"close_index": [118, 151, 184, 199],
"trade_duration": [123, 34, 31, 14],
"open_at_end": [False, False, False, True],
"sell_reason": [SellType.ROI, SellType.STOP_LOSS,
SellType.ROI, SellType.FORCE_SELL]
})
backtesting._store_backtest_result("backtest-result.json", results)
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# reset test to test with strategy name
names = []
records = []
backtesting._store_backtest_result(Path("backtest-result.json"), results, "DefStrat")
assert len(results) == 4
# Assert file_dump_json was only called once
assert names == [Path('backtest-result-DefStrat.json')]
records = records[0]
# Ensure records are of correct type
assert len(records) == 4
# ('UNITTEST/BTC', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur,
openr, closer, open_at_end, sell_reason) in records:
assert pair == 'UNITTEST/BTC'
assert isinstance(profit, float)
# FIX: buy/sell should be converted to ints
assert isinstance(date_buy, float)
assert isinstance(date_sell, float)
assert isinstance(openr, float)
assert isinstance(closer, float)
assert isinstance(open_at_end, bool)
assert isinstance(sell_reason, str)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix
oix = buy_index
assert dur > 0
def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
return _load_pair_as_ticks(pair, timeframe)
api_mock = MagicMock()
api_mock.fetch_ohlcv = load_pairs
patch_exchange(mocker, api_mock)
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--strategy', 'DefaultStrategy',
'--datadir', str(testdatadir),
'--ticker-interval', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions'
]
args = get_args(args)
start_backtesting(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Loading data from 2017-11-14T20:57:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...'
]
for line in exists:
assert log_has(line, caplog)
def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir):
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
async def load_pairs(pair, timeframe, since):
return _load_pair_as_ticks(pair, timeframe)
api_mock = MagicMock()
api_mock.fetch_ohlcv = load_pairs
patch_exchange(mocker, api_mock)
backtestmock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock)
gen_table_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', gen_table_mock)
gen_strattable_mock = MagicMock()
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table_strategy',
gen_strattable_mock)
patched_configuration_load_config_file(mocker, default_conf)
args = [
'backtesting',
'--config', 'config.json',
'--datadir', str(testdatadir),
'--ticker-interval', '1m',
'--timerange', '1510694220-1510700340',
'--enable-position-stacking',
'--disable-max-market-positions',
'--strategy-list',
'DefaultStrategy',
'SampleStrategy',
]
args = get_args(args)
start_backtesting(args)
# 2 backtests, 4 tables
assert backtestmock.call_count == 2
assert gen_table_mock.call_count == 4
assert gen_strattable_mock.call_count == 1
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ... Using ticker_interval: 1m ...',
'Ignoring max_open_trades (--disable-max-market-positions was used) ...',
'Parameter --timerange detected: 1510694220-1510700340 ...',
f'Using data directory: {testdatadir} ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Loading data from 2017-11-14T20:57:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Backtesting with data from 2017-11-14T21:17:00+00:00 '
'up to 2017-11-14T22:58:00+00:00 (0 days)..',
'Parameter --enable-position-stacking detected ...',
'Running backtesting for Strategy DefaultStrategy',
'Running backtesting for Strategy SampleStrategy',
]
for line in exists:
assert log_has(line, caplog)