244 lines
6.7 KiB
Plaintext
244 lines
6.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Analyzing bot data\n",
|
|
"\n",
|
|
"You can analyze the results of backtests and trading history easily using Jupyter notebooks. \n",
|
|
"**Copy this file so your changes don't get clobbered with the next freqtrade update!** \n",
|
|
"For usage instructions, see [jupyter.org](https://jupyter.org/documentation). \n",
|
|
"*Pro tip - Don't forget to start a jupyter notbook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Imports\n",
|
|
"from pathlib import Path\n",
|
|
"import os\n",
|
|
"from freqtrade.data.history import load_pair_history\n",
|
|
"from freqtrade.resolvers import StrategyResolver\n",
|
|
"from freqtrade.data.btanalysis import load_backtest_data\n",
|
|
"from freqtrade.data.btanalysis import load_trades_from_db"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Change directory\n",
|
|
"# Define all paths relative to the project root shown in the cell output\n",
|
|
"try:\n",
|
|
" os.chdir(Path(Path.cwd(), '../..'))\n",
|
|
" print(Path.cwd())\n",
|
|
"except:\n",
|
|
" pass"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Example snippets"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load backtest results into a pandas dataframe"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Load backtest results\n",
|
|
"df = load_backtest_data(\"user_data/backtest_data/backtest-result.json\")\n",
|
|
"\n",
|
|
"# Show value-counts per pair\n",
|
|
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load live trading results into a pandas dataframe"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Fetch trades from database\n",
|
|
"df = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
|
|
"\n",
|
|
"# Display results\n",
|
|
"df.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Strategy debugging example\n",
|
|
"\n",
|
|
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Import requirements and define variables used in analyses"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define some constants\n",
|
|
"ticker_interval = \"5m\"\n",
|
|
"# Name of the strategy class\n",
|
|
"strategy_name = 'AwesomeStrategy'\n",
|
|
"# Path to user data\n",
|
|
"user_data_dir = 'user_data'\n",
|
|
"# Location of the strategy\n",
|
|
"strategy_location = Path(user_data_dir, 'strategies')\n",
|
|
"# Location of the data\n",
|
|
"data_location = Path(user_data_dir, 'data', 'binance')\n",
|
|
"# Pair to analyze \n",
|
|
"# Only use one pair here\n",
|
|
"pair = \"BTC_USDT\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load exchange data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Load data using values set above\n",
|
|
"bt_data = load_pair_history(datadir=Path(data_location),\n",
|
|
" ticker_interval=ticker_interval,\n",
|
|
" pair=pair)\n",
|
|
"\n",
|
|
"# Confirm success\n",
|
|
"print(\"Loaded \" + str(len(bt_data)) + f\" rows of data for {pair} from {data_location}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Load and run strategy\n",
|
|
"* Rerun each time the strategy file is changed"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Load strategy using values set above\n",
|
|
"strategy = StrategyResolver({'strategy': strategy_name,\n",
|
|
" 'user_data_dir': user_data_dir,\n",
|
|
" 'strategy_path': strategy_location}).strategy\n",
|
|
"\n",
|
|
"# Generate buy/sell signals using strategy\n",
|
|
"df = strategy.analyze_ticker(bt_data, {'pair': pair})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Display the trade details\n",
|
|
"* Note that using `data.head()` would also work, however most indicators have some \"startup\" data at the top of the dataframe.\n",
|
|
"\n",
|
|
"#### Some possible problems\n",
|
|
"\n",
|
|
"* Columns with NaN values at the end of the dataframe\n",
|
|
"* Columns used in `crossed*()` functions with completely different units\n",
|
|
"\n",
|
|
"#### Comparison with full backtest\n",
|
|
"\n",
|
|
"having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.\n",
|
|
"\n",
|
|
"Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple \"buy\" signals for each pair in sequence (until rsi returns > 29).\n",
|
|
"The bot will only buy on the first of these signals (and also only if a trade-slot (\"max_open_trades\") is still available), or on one of the middle signals, as soon as a \"slot\" becomes available.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Report results\n",
|
|
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
|
|
"data = df.set_index('date', drop=True)\n",
|
|
"data.tail()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"file_extension": ".py",
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.3"
|
|
},
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"npconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": 3
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|