10 KiB
Strategy Migration between V2 and V3
We have put a great effort into keeping compatibility with existing strategies, so if you just want to continue using freqtrade in spot markets, there should be no changes necessary for now.
To support new markets and trade-types (namely short trades / trades with leverage), some things had to change in the interface. If you intend on using markets other than spot markets, please migrate your strategy to the new format.
Quick summary / migration checklist
- Strategy methods:
populate_buy_trend()
->populate_entry_trend()
populate_sell_trend()
->populate_exit_trend()
custom_sell()
->custom_exit()
- Dataframe columns:
buy
->enter_long
sell
->exit_long
buy_tag
->enter_tag
(used for both long and short trades)- New column
enter_short
and corresponding new columnexit_short
- trade-object now has the following new properties:
is_short
,enter_side
,exit_side
andtrade_direction
. - New
side
argument to callbacks without trade objectcustom_stake_amount
confirm_trade_entry
- Changed argument name in
confirm_trade_exit
- Renamed
trade.nr_of_successful_buys
totrade.nr_of_successful_entries
(mostly relevant foradjust_trade_position()
). - Introduced new
leverage
callback. - Informative pairs can now pass a 3rd element in the Tuple, defining the candle type.
@informative
decorator now takes an optionalcandle_type
argument.- helper methods
stoploss_from_open
andstoploss_from_absolute
now takeis_short
as additional argument. INTERFACE_VERSION
should be set to 3.- Strategy/Configuration settings.
order_time_in_force
buy -> entry, sell -> exit.order_types
buy -> entry, sell -> exit.
Extensive explanation
populate_buy_trend
In populate_buy_trend()
- you will want to change the columns you assign from 'buy
' to 'enter_long
, as well as the method name from populate_buy_trend
to populate_entry_trend
.
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['buy', 'buy_tag']] = (1, 'rsi_cross')
return dataframe
After:
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['enter_long', 'enter_tag']] = (1, 'rsi_cross')
return dataframe
Please refer to the Strategy documentation on how to enter and exit short trades.
populate_sell_trend
Similar to populate_buy_trend
, populate_sell_trend()
will be renamed to populate_exit_trend()
.
We'll also change the column from "sell"
to "exit_long"
.
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['sell', 'exit_tag']] = (1, 'some_exit_tag')
return dataframe
After
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'some_exit_tag')
return dataframe
Please refer to the Strategy documentation on how to enter and exit short trades.
custom_sell
class AwesomeStrategy(IStrategy):
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
# ...
class AwesomeStrategy(IStrategy):
def custom_exit(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
# ...
Custom-stake-amount
New string argument side
- which can be either "long"
or "short"
.
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], **kwargs) -> float:
# ...
return proposed_stake
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: float, max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
# ...
return proposed_stake
confirm_trade_entry
New string argument side
- which can be either "long"
or "short"
.
class AwesomeStrategy(IStrategy):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
**kwargs) -> bool:
return True
After:
class AwesomeStrategy(IStrategy):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
side: str, **kwargs) -> bool:
return True
confirm_trade_exit
Changed argument sell_reason
to exit_reason
.
For compatibility, sell_reason
will still be provided for a limited time.
class AwesomeStrategy(IStrategy):
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
current_time: datetime, **kwargs) -> bool:
return True
After:
class AwesomeStrategy(IStrategy):
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, exit_reason: str,
current_time: datetime, **kwargs) -> bool:
return True
Adjust trade position changes
While adjust-trade-position itself did not change, you should no longer use trade.nr_of_successful_buys
- and instead use trade.nr_of_successful_entries
, which will also include short entries.
Helper methods
Added argument "is_short" to stoploss_from_open
and stoploss_from_absolute
.
This should be given the value of trade.is_short
.
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)
return 1
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate, is_short=trade.is_short)
Strategy/Configuration settings
order_time_in_force
order_time_in_force
attributes changed from "buy"
to "entry"
and "sell"
to "exit"
.
order_time_in_force: Dict = {
"buy": "gtc",
"sell": "gtc",
}
order_time_in_force: Dict = {
"entry": "gtc",
"exit": "gtc",
}
order_types
order_types
have changed all wordings from buy
to entry
- and sell
to exit
.
order_types = {
"buy": "limit",
"sell": "limit",
"emergencysell": "market",
"forcesell": "market",
"forcebuy": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
order_types = {
"entry": "limit",
"exit": "limit",
"emergencyexit": "market",
"forceexit": "market",
"forceentry": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60